The combined use of vegetation indices and stable isotopes to predict durum wheat grain yield under contrasting water conditions
Abdelhalim Elazab,
Jordi Bort,
Bangwei Zhou,
María Dolors Serret,
María Teresa Nieto-Taladriz and
José Luis Araus
Agricultural Water Management, 2015, vol. 158, issue C, 196-208
Abstract:
Improving durum wheat performance to abiotic stresses is often limited by a lack of proper monitoring methods in support of crop management and efficient phenotyping tools for breeding. The objectives of this study were: (1) comparing the performance under contrasting water treatments of different physiological traits, which evaluate plant growth and water status; and (2) understanding how these traits can predict grain yield (GY) performance under contrasting water conditions. Thus, five modern durum wheat genotypes were subjected to rainfed (RF) and supplemental irrigation (SI) treatments. Two categories of physiological traits were tested; (1) the vegetation indices: the Normalized Difference Vegetation Index (NDVI) and the Normalized Green Red Difference Index (NGRDI); and (2) the stable carbon and oxygen isotope compositions (δ13C and δ18O) of different plant parts. The NGRDI at anthesis and the δ13C of mature grains were the traits best correlated (positively and negatively, respectively) with GY. Both traits in combination explained at least 50% of variability in GY within each water treatment. The produced path models for RF and SI conditions highlighted the particular role of NGRDI and δ13C in predicting GY. In addition, the study showed the potential of using vegetation indices derived from digital Red-Green-Blue (RGB) images as a low-cost technique for assessing aerial biomass (AB) and GY under different water availabilities.
Keywords: Digital RGB imaging; Durum wheat; Path models; Vegetation indices; Stable isotopes; Grain yield (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377415001560
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:158:y:2015:i:c:p:196-208
DOI: 10.1016/j.agwat.2015.05.003
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().