EconPapers    
Economics at your fingertips  
 

Water temperature in irrigation return flow from the Upper Snake Rock watershed

David L. Bjorneberg

Agricultural Water Management, 2015, vol. 158, issue C, 209-212

Abstract: The temperature of water can increase as it flows in irrigation canals, ditches and furrow irrigated fields, potentially increasing the temperature of irrigation return flow water. The objective of this study was to compare water temperature of irrigation return flow with the irrigation water diverted from the Snake River. Water temperature was measured weekly in the main irrigation canal and 23 return flow streams from 2005 to 2008 in the Upper Snake Rock (USR) watershed in Southern Idaho, USA. The USR is an 82,000ha watershed with about 60% of the crop land surface irrigated and the remaining area sprinkler irrigated. Median annual water temperatures in irrigation return flow streams were not greater than the water diverted from the river, suggesting that water temperature does not increase as water flowed through the canal system and furrow irrigated fields. Water in 7 of the 13 return flow streams that received flow from subsurface drains had significantly lower temperatures than the main canal in at least two years of the four years. Median water temperature in July in seven return flow streams was also lower than the main canal. Results of this study indicate that water can be diverted from a river for irrigation without increasing the temperature of the irrigation return flow.

Keywords: Surface irrigation; Irrigated watershed; Irrigation diversion (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377415300044
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:158:y:2015:i:c:p:209-212

DOI: 10.1016/j.agwat.2015.05.013

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:158:y:2015:i:c:p:209-212