Effects of climate change including elevated CO2 concentration, temperature and water deficit on growth, water status, and yield quality of grapevine (Vitis vinifera L.) cultivars
T. Kizildeniz,
I. Mekni,
H. Santesteban,
I. Pascual,
F. Morales and
J.J. Irigoyen
Agricultural Water Management, 2015, vol. 159, issue C, 155-164
Abstract:
In the Mediterranean area, climate change is associated with atmospheric CO2 concentration increases, enhanced temperatures and scarce water availability, limiting seriously crop yield and decreasing quality. The aim of this study was to investigate the effects of elevated CO2, elevated temperature and water deficit, acting individually and/or interacting, on vegetative and reproductive growth, substrate and plant water status, and must quality in fruit-bearing cuttings of two grapevine (Vitis vinifera L.) cultivars (red and white Tempranillo). In four temperature gradient greenhouses, eight treatments were applied, from fruit set to maturity: CO2 level (400 versus 700μmolmol−1), temperature (ambient versus ambient +4°C), and water availability (full irrigation versus cyclic drought). Effects of climate change on grape yield and quality were cultivar dependent. Generally, red Tempranillo had more vegetative growth and grape yield than the white cultivar. Also, grape yield was less affected by the treatments than vegetative growth. Drought, especially under elevated temperature, drastically reduced vegetative growth, bunch fresh and dry weights in both cultivars. Interestingly, elevated CO2 attenuated these negative effects of drought. The effects of climatic factors on yield were not associated with a worse water status of the vegetative or reproductive organs. In red Tempranillo, the combination of elevated CO2, elevated temperature and drought reduced total polyphenol index (TPI), malic acid and increased color density, but did not modify anthocyanin concentration. In white Tempranillo, the combined action of the three factors associated with climate change modified only tartaric acid. In this latter cultivar, drought increased TPI under ambient temperature, regardless of CO2 level, when compared with full-irrigated plants. In conclusion, climate change-related factors (elevated CO2, elevated temperature and water deficit) individually (especially drought) and/or interacting affected to different extent red and white Tempranillo vegetative growth and yield. Drought combined with elevated temperatures reduced grapevine performance, and elevated CO2 mitigated such deleterious effect.
Keywords: Red and white Tempranillo; Anthocyanins; Malic and tartaric acid; Total soluble sugars; Total polyphenol index (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377415300299
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:159:y:2015:i:c:p:155-164
DOI: 10.1016/j.agwat.2015.06.015
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().