Modeling soil–water dynamics and soil–water carrying capacity for vegetation on the Loess Plateau, China
Bingxia Liu and
Shao, Ming’an
Agricultural Water Management, 2015, vol. 159, issue C, 176-184
Abstract:
The conflict between soil desiccation and the sustainable development of revegetation is increasingly important on the Loess Plateau in China. Quantitative guidelines for the selection of plant species, optimal density or biomass, and appropriate management for vegetative restoration are required to address this conflict. The objective of the study is to simulate soil–water dynamics with using the one-dimensional Simultaneous Heat and Water Transfer (SHAW) model to assess consumption process of soil water with growth of caragana and alfalfa and there optimal carrying capacity. Soil and plant parameters required by the SHAW model were calibrated and validated with meteorological and soil–water data from 2004 to 2005 and 2012, respectively. The data from the calibration and verification trials for soil water content were significantly linearly correlated based on a 95% confidence level and had average root mean square errors of 1.06 and 5.71% for caragana and 0.88 and 1.14% for alfalfa, respectively. The SHAW model was thus sufficiently accurate for simulating soil–water dynamics during 2005–2011 in response to plant growing and corresponding changes in biomass. The simulations indicated that soil water decreased within 1.0–4.0m profiles and that the depth of water depletion deepened with plant growth after vegetative restoration. Dry soil layers (DSLs) began to develop below 1.0 m after five years for caragana and after three years for alfalfa. The optimal ages of the caragana and alfalfa in the study area were thus five and three years, respectively, and the corresponding soil water carrying capacities that were maximum biomasses were 4800kg/hm2 and 1380kg/hm2, respectively. These results provide useful information for designing appropriate practices of vegetative restoration to attain sustainable ecological and economic benefits on the Loess Plateau.
Keywords: Vegetation restoration; Soil desiccation; Carrying capacity; Plant biomass; SHAW model (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377415300366
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:159:y:2015:i:c:p:176-184
DOI: 10.1016/j.agwat.2015.06.019
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().