Enhancement of nitrate removal in constructed wetlands utilizing a combined autotrophic and heterotrophic denitrification technology for treating hydroponic wastewater containing high nitrate and low organic carbon concentrations
Jong-Hwan Park,
Seong-Heon Kim,
Ronald D. Delaune,
Ju-Sik Cho,
Jong-Soo Heo,
Yong Sik Ok and
Dong-Cheol Seo
Agricultural Water Management, 2015, vol. 162, issue C, 1-14
Abstract:
To enhance the nitrate removal in constructed wetlands (CWs) for treating hydroponic wastewater discharged from greenhouses, the effectiveness of HF (horizontal flow)-HF hybrid CWs utilizing a combined sulfur-based autotrophic (based on the optimum conditions from batch experiment) and heterotrophic denitrification was evaluated for treating hydroponic wastewater containing high nitrate and low organic carbon concentrations. The optimum ratio of sulfur: limestone:immobilized bead with Thiobacillus denitrificans (T. denitrificans) was found to be 3:1:4; the optimum initial cell density was above 1×106cells; the optimum temperature was 25–35°C; and the optimum sulfur sources were thiosulfate and elemental sulfur to effectively treat hydroponic wastewater utilizing autotrophic denitrification with T. denitrificans in batch experiments. In the HF–HF CWs utilizing the combined autotrophic and heterotrophic denitrification, the average removal efficiencies of nitrate were higher in the order of T2 (71.5%, thiosulfate treatment—combination of heterotrophic and autotrophic denitrification) >T3 (66.6%, element sulfur treatment—combination of heterotrophic and autotrophic denitrification) ≫T1 (43.0%, control—heterotrophic denitrification only). In the HF–HF CWs, the maximum nitrate removal efficiency by the thiosulfate treatment was slightly greater than that by the treatment with elemental sulfur, whereas the sulfate production influence on autotrophic denitrification by elemental sulfur (SO42−: 89.1mgL−1) was lower as compared to thiosulfate (SO42−: 38.3mgL−1). Because the sulfate production is an important factor to meet acceptable drinking water quality discharge standard (Sulfate concentration in the effluent was below 250 in US EPA, and 200mgL−1 in South Korea), elemental sulfur was a more suitable sulfur source in HF–HF hybrid CWs. Overall, a combined process of using E/L/B (element sulfur/limestone/immobilized bead with T. denitrificans) column in HF–HF hybrid CWs would promote autotrophic and heterotrophic denitrification. Therefore, a combined autotrophic and heterotrophic denitrification process in HF–HF CWs would be more suitable than the heterotrophic denitrification alone (conventional technology in CWs) for treating nitrate in hydroponic wastewater since hydroponic wastewater contains little organic carbon.
Keywords: Autotrophic denitrification; Heterotrophic denitrification; Constructed wetland; Hydroponic wastewater; Thiobacillus denitrificans; Nitrate (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377415300676
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:162:y:2015:i:c:p:1-14
DOI: 10.1016/j.agwat.2015.08.001
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().