Application of deficit irrigation to container-grown hardy ornamental nursery stock via overhead irrigation, compared to drip irrigation
Michael J. Davies,
Richard Harrison-Murray,
Christopher J. Atkinson and
Olga M. Grant
Agricultural Water Management, 2016, vol. 163, issue C, 244-254
Abstract:
Growth control of container-grown hardy nursery stock generally requires substantial labour investment. Therefore the possibility of alternative growth control using deficit irrigation is appealing. Increasing water costs and limited availability of abstraction licences have added further incentives for nursery stock producers to use deficit irrigation. There are still, however, concerns that inherent non-uniformity of water uptake under commonly used overhead irrigation, and differing irrigation requirements of diverse crops and substrates, may limit the commercial relevance of a protocol developed for single crops growing in 100% peat and irrigated with a high precision drip system. The aim of this research was to determine whether growth control of hardy nursery stock is possible using deficit irrigation applied with conventional overhead irrigation. Over two years, crop growth under an overhead irrigation system was compared under full irrigation and two severities of deficit irrigation. Initially, two crops of contrasting canopy structure i.e. Cornus alba and Lonicera periclymenum were grown. In a subsequent experiment one crop (Forsythia×intermedia) was grown in two substrates with contrasting quantities of peat (60 and 100%). Deficit irrigation was found to be highly effective in controlling vegetative growth when applied using overhead irrigation—with similar results as when drip irrigation was used. This comparable response suggests that deficit irrigation can be applied without precision drip irrigation. Scheduling two very different crops with respect to their water use and uptake potential, however, highlighted challenges with respect to application of appropriate deficits for very different crops under one system; responses to deficit irrigation will be more consistent where nursery management allows for scheduling of crops with very different architecture and water use under different regimes. The effectiveness of deficit irrigation in controlling the growth of Forsythia was similar when a reduced peat based substrate was compared with pure peat; additionally, flowering was enhanced.
Keywords: Container production; Irrigation scheduling; Irrigation systems; Peat alternatives; Plant growth management; Resource use efficiency (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377415301086
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:163:y:2016:i:c:p:244-254
DOI: 10.1016/j.agwat.2015.09.015
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().