EconPapers    
Economics at your fingertips  
 

Drought response and yield formation of spring safflower under different water regimes in the semiarid Southern High Plains

Sukhbir Singh, Sangamesh V. Angadi, Kulbhushan Grover, Sultan Begna and Dick Auld

Agricultural Water Management, 2016, vol. 163, issue C, 354-362

Abstract: Safflower (Carthamus tinctorius L.) is a deep rooted drought tolerant crop that originated in desert environments of the Middle East, and could be very well adapted to the semi-arid Southern High Plains. A field experiment was conducted at Clovis, New Mexico during 2012 and 2013 seasons to assess drought physiology and yield formation of two diverse spring safflower cultivars under different irrigation levels with or without preseason irrigation. One half of the experimental blocks received preseason irrigation of 164mm in 2012 and 153mm in 2013 to refill the soil profile utilized by the previous crops, while the other half remained depleted. Five in-season irrigation levels (I1–I5) ranging from 88 to 392mm in 2012 and from 83 to 373mm in 2013 were imposed on both preseason irrigation and no-preseason irrigation blocks. Higher leaf water potential (Ψl) was observed under increased water availability either by preseason irrigation or by higher in-season irrigation level in safflower during two observation dates in both years. Osmotic potential at full turgor (Ψπ100), photosynthesis rate (Pn) and transpiration rate (Tr) decreased with a reduction in Ψl under water stress conditions. The relative water content (RWC) was affected only by the in-season irrigation levels in both years. The preseason irrigation increased seed yield of safflower by 39 and 118% over no-preseason irrigation in 2012 and 2013, respectively. A gradual increase in seed yield was observed with an increase in irrigation levels; and the highest irrigation level, I5 increased seed yield by 85 and 171% over the lowest irrigation level, I1 in 2012 and 2013, respectively. Seed yield increased with increase in Pn, plant biomass, number of heads per plant, and number of seeds per head but not with 1000-seed weight under increased water availability. Overall, increased availability of water through preseason irrigation or through in-season irrigation levels improved safflower physiology and yield formation.

Keywords: Spring safflower; Preseason irrigation; Irrigation levels; Drought physiology; Yield formation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377415301281
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:163:y:2016:i:c:p:354-362

DOI: 10.1016/j.agwat.2015.10.010

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:163:y:2016:i:c:p:354-362