Loss of soil phosphorus by tile drains during storm events
Dana Zimmer,
Petra Kahle and
Christel Baum
Agricultural Water Management, 2016, vol. 167, issue C, 21-28
Abstract:
Phosphorus losses from agricultural soils are usually predominately caused by surface-runoff and only rarely by tile drain discharge. However, storm events can drastically increase P transfer to water bodies. In 2011 summer storm events caused 3.2 fold higher precipitation compared to the long-term average in Northern Germany. During these storm events excessive yellow-brown ochre flocs were observed in drain discharges and supposed to be potential P carrier. Therefore, water samples with ochre flocs were taken and analyzed by light and electron microscopy and for total elemental concentrations of P and its common binding partners (Al, Fe, Mn). Additionally, sandy sediment samples were taken in winter and analyzed for total and oxalate-extractable amounts of these elements. Water samples with ochre flocs revealed total P concentrations of approximately 27 to 141mgl−1. During the high discharge period a cumulative discharge of 124.6mm from a drain plot of 4.2ha was recorded, which resulted in a calculated minimum loss of 34kg Ptha−1. This was assumed to be promoted by the excessive occurrence of ochre flocs, which were mainly formed by fungal mycelia with precipitated Fe- and Mn-(hydr)oxides at the surface. The poor crystallinity of the Fe-oxides from the discharge of tile drains was confirmed by an amount of up to 94% of active Fe-oxides in the sandy sediment. The extremely high discharge from tile drains, the flocky nature of the ochre along with a poor crystallinity of Fe-oxides and high P concentrations possess the risk of increased input and bioavailability of P in water bodies. Therefore, discharge and P forms from tile drained areas should be monitored more intensively and retention of P on tile drain outlets should be considered to prevent water bodies from eutrophication.
Keywords: Phosphorus leaching; Ochre flocs; Element mapping; Protection of surface water; Water quality (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037837741530189X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:167:y:2016:i:c:p:21-28
DOI: 10.1016/j.agwat.2015.12.017
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().