EconPapers    
Economics at your fingertips  
 

Water stress improves whole-canopy water use efficiency and berry composition of cv. Sangiovese (Vitis vinifera L.) grapevines grafted on the new drought-tolerant rootstock M4

M.C. Merli, E. Magnanini, M. Gatti, F.J. Pirez, I. Buesa Pueyo, D.S. Intrigliolo and S. Poni

Agricultural Water Management, 2016, vol. 169, issue C, 106-114

Abstract: Testing of new rootstocks for drought tolerance targets traditionally rain-fed districts where supplemental irrigation is more frequently needed due to the pressures of global warming. A seasonal evaluation of whole-canopy gas exchange, water-use efficiency (WUEc), yield components and compositional traits of Vitis vinifera cv. Sangiovese grafted to the new drought-tolerant genotype M4 against the commercial SO4 stock is reported. The experiment was conducted in 2015 on twelve four-year-old, fruiting potted Sangiovese grapevines grafted on M4 and SO4 stocks and assigned to SO4-WW (well-watered), SO4-WS (water-stressed), M4-WW and M4-WS treatments. Water deficit was imposed pre-veraison by reducing water supply to 50% of whole-canopy demand derived from concurrent measurements of transpiration in WW and maintained until three weeks after veraison prior to full rewatering. While WUEc was unchanged in WS-SO4 as compared to WW-SO4, WUEc in WS-M4 increased by 22% vs. WW-M4 over the whole water deficit period and such gain was partially maintained upon rewatering. Higher WUEc in WS-M4 resulted from an ability to maintain canopy photosynthesis similar to WS-SO4 at a reduced water use. Although yield per vine was similarly reduced in the two WS treatments (about 1kg less than WW), overall grape composition was improved in WS-M4 and worsened in WS-SO4 when compared to the WW controls. Total soluble solids (°Brix) rose by 11% in WS-M4 vs. the respective control, whereas in WS-S04 there was a slight decrease (−0.6 Brix). Most notably, anthocyanins accumulation was largely limited in vines grafted on SO4 (−45% vs. WW-SO4 when given on a concentration basis), while in M4-grafted plants berry pigmentation slightly improved vs. WW (+12.5%). Hypothesis is made that grafting onto different stocks can trigger differential gene regulation under water stress and high temperatures leading to different sensitivity in synthesis and/or degradation of already formed anthocyanins.

Keywords: Gas exchange; Leaf–water potential; Rootstock; Water-use efficiency; Water stress (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377416300646
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:169:y:2016:i:c:p:106-114

DOI: 10.1016/j.agwat.2016.02.025

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:169:y:2016:i:c:p:106-114