Water balance implications of switching from continuous submergence to flush irrigation in a rice-growing district
Sandra Cesari de Maria,
Michele Rienzner,
Arianna Facchi,
Enrico Antonio Chiaradia,
Marco Romani and
Claudio Gandolfi
Agricultural Water Management, 2016, vol. 171, issue C, 108-119
Abstract:
Studies conducted at the field scale report significant reductions in the irrigation requirements of rice when continuous submergence (CS) is replaced by less water-demanding regimes such as flush-irrigation (FI, i.e. intermittent irrigations of rice growing in non-submerged soils). However, the effects of their extensive application in paddy areas with shallow groundwater is much less studied. We present a scenario analysis investigating the impacts on irrigation requirements induced by a shift from CS to FI in an irrigation district of Northern Italy where rice is the main crop, followed by maize and poplar. The area is characterised by a shallow water Table whose depth fluctuates between two meters (in winter) and less than 1m (in summer). We applied a three-stage procedure, where we first analysed present state conditions using the SWAP (Soil, Water, Atmosphere, Plant) model to simulate irrigation deliveries and percolation fluxes. Then, we calibrated an empirical relationship between estimated percolation fluxes and measured depths to groundwater. Finally, we applied this relationship, in combination with the SWAP model, to predict the variation of district irrigation requirements due to a widespread shift from CS to FI. Results show that neglecting the feedback between groundwater recharge due to irrigation and groundwater depth led to overestimating the reduction of irrigation requirements of rice, which decreased from around 80% when no feedback was considered to around 60% when it was accounted for. Moreover, increased groundwater depths resulted in higher irrigation requirements for maize with an estimated growth of more than 50% due to the need of shortening the irrigation turn. These results demonstrate the importance of considering the impacts on the hydrological processes at larger scales when planning the conversion of CS into more efficient field irrigation methods.
Keywords: Rice irrigation; Shallow groundwater; Irrigation district; SWAP model; Scenario analysis (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377416301020
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:171:y:2016:i:c:p:108-119
DOI: 10.1016/j.agwat.2016.03.018
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().