Nutrient and tillage strategies to increase grain yield and water use efficiency in semi-arid areas
Yanhao Lian,
Shahzad Ali,
Xudong Zhang,
Tianlu Wang,
Qi Liu,
Qianmin Jia,
Zhikuan Jia and
Qingfang Han
Agricultural Water Management, 2016, vol. 178, issue C, 137-147
Abstract:
Water and fertilizer are major factors that influence crop productivity in dryland farming. The ridge and furrow rainfall harvesting (RFRH) system is known to be an effective planting method for improving rainwater utilization, but suitable fertilizer application rates for foxtail millet under RFRH planting have not yet been determined. In 2014 and 2015, we examined the effects of four fertilizer application rates (F0, F1, F2, and F3) under RFRH planting (RFRHP) and traditional flat planting (TFP) on the soil water content (SWC), evapotranspiration (ET), plant growth, grain yield, and resource use efficiency for foxtail millet. We found that RFRHP improved the SWC, where the SWC exhibited a decreasing trend as the fertilizer rate increased, but generally there was no significant difference among F1, F2 and F3 under both planting patterns. Compared with TFP, RFRHP produced a slightly higher maximum leaf area and dry matter accumulation, although the differences were not significant, while total ET was reduced and there were general improvements in the harvest index, grain yield, water use efficiency (WUE), agronomic efficiency, and net economic benefit. Foxtail millet responded positively to fertilizer, and F2 was the economical fertilizer input rate, where the leaf area, dry matter accumulation, and grain yield were increased slightly with no significant difference when the fertilizer rate was increased beyond F2, while agronomic efficiency was significantly decreased. The highest economic net benefit was achieved by RFRHP combined with F2, which also obtained significantly higher grain yield, WUE and agronomic efficiency compared with TFP. Thus, we recommend the RFRH system with F2 (186:96kgN:Pha−1) for high productivity and efficient foxtail millet production in semi-arid areas.
Keywords: Agronomic efficiency; Evapotranspiration; Foxtail millet; Ridge and furrow rainfall harvesting; Soil water content (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377416303730
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:178:y:2016:i:c:p:137-147
DOI: 10.1016/j.agwat.2016.09.021
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().