Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients
Emily G. Kullberg,
Kendall C. DeJonge and
José L. Chávez
Agricultural Water Management, 2017, vol. 179, issue C, 64-73
Abstract:
Remotely sensed data such as spectral reflectance and infrared canopy temperature can be used to quantify crop canopy cover and/or crop water stress, often through the use of vegetation indices calculated from the near-infrared and red bands, and stress indices calculated from the thermal wavelengths. Standardized dual crop coefficient methods calculate both a non-stressed transpiration coefficient (Kcb) that is related to canopy cover, and a stress or transpiration reduction coefficient (Ks) that can be related to soil water deficit or other stress factors (e.g. disease). This study compares several remote sensing methods to determine Kcb and Ks and resulting evapotranspiration (ET) in a deficit irrigation experiment of corn (Zea mays L.) near Greeley, Colorado. Three methods were used to calculate Kcb (tabular, normalized difference vegetation index – NDVI, and canopy cover). Four canopy temperature based methods were used to calculate Ks: Crop Water Stress Index – CWSI, Canopy Temperature Ratio – Tcratio, Degrees Above Non-Stressed – DANS, Degrees Above Canopy Threshold – DACT. Crop ET predicted by these methods was compared to observation and water balance based ET measurements. Thermal indices DANS and DACT were calibrated to convert to Ks. Results showed that stress coefficient methods with less data requirements such as DANS and DACT are responsive to crop water stress as demonstrated by low RMSE of ET calculations, comparable to more data intensive methods such as CWSI. Results indicate which remote sensing methods are appropriate to use given certain data availability and irrigation level, in addition to providing an estimation of the associated error in ET.
Keywords: Canopy temperature; Crop coefficient; Crop water stress index; DANS index; DACT index (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377416302530
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:179:y:2017:i:c:p:64-73
DOI: 10.1016/j.agwat.2016.07.007
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().