Assessing FAO-56 dual crop coefficients using eddy covariance flux partitioning
Ray G. Anderson,
Joseph G. Alfieri,
Rebecca Tirado-Corbalá,
Jim Gartung,
Lynn G. McKee,
John H. Prueger,
Dong Wang,
James E. Ayars and
William P. Kustas
Agricultural Water Management, 2017, vol. 179, issue C, 92-102
Abstract:
Current approaches to scheduling crop irrigation using reference evapotranspiration (ET0) recommend using a dual-coefficient approach using basal (Kcb) and soil (Ke) coefficients along with a stress coefficient (Ks) to model crop evapotranspiration (ETc), [e.g. ETc=(Ks*Kcb+Ke)*ET0]. However, determining Ks, Kcb, and Ke from the combined evapotranspiration (ET) is challenging, particularly for Ke, and a new method is needed to more rapidly determine crop coefficients for novel cultivars and cultivation practices. In this study, we partition eddy covariance ET observations into evaporation (E) and transpiration (T) components using correlation structure analysis of high frequency (10–20Hz) observations of carbon dioxide and water vapor (Scanlon and Sahu, 2008) at three irrigated agricultural sites. These include a C4 photosynthetic-pathway species (sugarcane—Sacharum officinarum L.) and a C3 pathway species (peach—Prunus persica) under sub-surface drip and furrow irrigation, respectively. Both sites showed high overall Kc consistent with their height (>4m). The results showed differences in Ke, with the sub-surface drip-irrigated sugarcane having a low Ke (0.1). There was no significant relationship (r2<0.05) between root zone soil volumetric water content (VWC) in sugarcane and observed Kcb*Ks, indicating that there was no stress (Ks=1), while the peach orchard showed mid-season declines in Kcb*Ks when VWC declined below 0.2. Partitioning of Kc into Kcb and Ke resulted in a better regression (r2=0.43) between the Normalized Differential Vegetation Index (NDVI) and Kcb in sugarcane than between NDVI and Kc (r2=0.11). The results indicate the potential for correlation structure flux partitioning to improve crop ET coefficient determination by improved use of eddy covariance observations compared to traditional approaches of lysimeters and microlysimeters and sap flow observations to determine Kc, Ke, Ks, and Kcb.
Keywords: FAO-56; Eddy covariance; Flux partitioning; Crop coefficients; Evapotranspiration (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377416302840
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:179:y:2017:i:c:p:92-102
DOI: 10.1016/j.agwat.2016.07.027
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().