EconPapers    
Economics at your fingertips  
 

The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.)

Rudzani Mathobo, Diana Marais and Joachim Martin Steyn

Agricultural Water Management, 2017, vol. 180, issue PA, 118-125

Abstract: Global food production relies on irrigation, especially in low rainfall areas such as South Africa. The study was conducted to determine the effect of drought stress on growth, yield, leaf gaseous exchange and chlorophyll fluorescence parameters of dry bean under field conditions and the after effects of drought stress upon lifting drought stress. A rain shelter field trial was conducted at the Hatfield Experimental Farm of the University of Pretoria, Pretoria, South Africa. Dry bean cultivar DBS 360 was subjected to five levels of moisture stress arranged in a randomized complete block design with six replications. The plants were exposed to the following drought stress levels: the control: Irrigated to field capacity (S1), Withholding irrigation from 36days after planting (DAP) for 24days (S2), Withholding irrigation from 49 DAP for 24days (S3), Withholding irrigation from 73 DAP to the end of the growing season (S4) and irrigated to field capacity on a fortnightly bases for the rest of the season from 36 DAP to the end of the growing season (S5).The results revealed that drought stress reduced dry matter production, leaf area index, number of pods per plant, number of seeds per plant, hundred seed weight and grain yield. Treatments S1, S4 and S5 produced statistically similar grain yield. Drought stress towards the end of the growing season may not cause serious harm in grain yield. Drought stress resulted in a reduction in photosynthetic rate, intercellular carbon dioxide concentration, stomatal conductance and transpiration. Chlorophyll fluorescence was also affected by drought stress. The highest WUE was found in the treatment which was irrigated on fortnightly bases from 36 DAP. This indicates that with appropriate irrigation it is possible to save water without a great yield loss in dry bean.

Keywords: Moisture stress; Photosynthesis; Water stress; Water use efficiency (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377416304486
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:180:y:2017:i:pa:p:118-125

DOI: 10.1016/j.agwat.2016.11.005

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:180:y:2017:i:pa:p:118-125