Automatic fault detection in a low cost frequency domain (capacitance based) soil moisture sensor
M.J. Oates,
K. Ramadan,
J.M. Molina-Martínez and
A. Ruiz-Canales
Agricultural Water Management, 2017, vol. 183, issue C, 41-48
Abstract:
Frequency Domain Analysis can be used to determine the moisture content of soils. At least two techniques can be used, the first using the soil capacitance as part of a low pass filter, measuring the attenuation of a fixed frequency signal, the second using the soil capacitance as the controlling component in a variable frequency oscillator. Whilst the two techniques demonstrate differing sensitivities to different conditions, they demonstrate an acceptably stable reciprocal relationship to each other over a wide range of soil moisture conditions. With insulated probes, it is possible under field conditions for these probes to be damaged or for moisture to creep into the electronics housing. Either of these conditions make the soil capacitor appear to ‘leak’ by providing a lower electrically resistive path in parallel with the soil capacitance. This resistance affects the measurements of the two techniques described above in different ways and thus readings from the sensors diverge from their normal relationships. These variations are measureable and thus the fault condition can be automatically detected. This can be used to flag potential problems in the soil moisture measurements raising an alarm condition, or stopping unnecessary irrigation based on erroneous results from a damaged sensor. This paper presents results demonstrating these phenomena using a Frequency Domain capacitance based sensor costing less than 10 Euros.
Keywords: FDR; Irrigation water management; Calibration; Sustainability (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377416304917
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:183:y:2017:i:c:p:41-48
DOI: 10.1016/j.agwat.2016.12.002
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().