EconPapers    
Economics at your fingertips  
 

High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard

L.G. Santesteban, S.F. Di Gennaro, A. Herrero-Langreo, C. Miranda, J.B. Royo and A. Matese

Agricultural Water Management, 2017, vol. 183, issue C, 49-59

Abstract: Thermal imaging can become a readily usable tool for crop agricultural water management, since it allows a quick determination of canopy surface temperature that, as linked to transpiration, can give an idea of crop water status. In the last years, the resolution of thermal imaging systems has increased and its weight decreased, fostering their implementation on Unmanned Aerial Vehicles (UAV) for civil and agricultural engineering purposes. This approach would overcome most of the limitations of on site thermal imaging, allowing mapping plant water status at either field or farm scale, taking thus into account the naturally existing or artificially induced variability at those scales. The aim of this work was to evaluate to which extent high-resolution thermal imaging allows evaluating the instantaneous and seasonal variability of water status within a vineyard. The novelty and significance of our approach is that the specifically designed and build unmanned aerial vehicle (UAV) provided very high-resolution imaging (pixel <9cm), and that it was used at a commercially relevant acreage (7.5ha). This set-up was used to obtain Crop Water Stress Index (CWSI) from thermal images in a clear-sky day. CWSI values were and compared to stem water potential (Ψs) and stomatal conductance (gs) measured at 14 sampling sites across the vineyard at the moment when images where acquired. In order to evaluate the potential of CWSI acquired in a single day to estimate within-vineyard patterns of variation in water status, a spatial modeling approach was used. CWSI correlated well with Ψs and gs at the moment of image acquisition, showing to have a great potential to monitor instantaneous variations in water status within a vineyard. The information provided by thermal images proved to be relevant at a seasonal scale as well, although it did not match seasonal trends in water status but mimicked other physiological processes occurring during ripening. Therefore, if a picture of variations in water status is required, it would be necessary to acquire thermal images at several dates along the summer.

Keywords: Crop Water Stress Index; UAV; Stomatal conductance; Water potential; Vitis vinifera L. (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377416303201
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:183:y:2017:i:c:p:49-59

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

 
Page updated 2018-09-15
Handle: RePEc:eee:agiwat:v:183:y:2017:i:c:p:49-59