EconPapers    
Economics at your fingertips  
 

Soil vs. groundwater: The quality dilemma. Managing nitrogen leaching and salinity control under irrigated agriculture in Mediterranean conditions

Angela Libutti and Massimo Monteleone

Agricultural Water Management, 2017, vol. 186, issue C, 40-50

Abstract: A 3-year field trial was carried out in southern Italy on an agricultural farm close to the seacoast of Manfredonia Gulf (Apulia Region) where crop irrigation with saline water is standard practice. Seawater intrusion into the groundwater, and the consequent soil salinization represent a serious environmental threat. Each year, two crop cycles were applied, in spring-summer and autumn-winter seasons, respectively. The crop pairing over the three years was tomato and spinach; zucchini and broccoli; pepper and wheat. Cultivation was performed in a field-unit characterised by three adjacent plots. At the centre of each plot, a hydraulically insulated drainage basin was dug (0.70m depth) to collect the draining water. The crops were irrigated with saline water and leaching treatments were applied with saline or fresh water whenever soil salinity reached a predetermined electrical conductivity threshold. Since soil salinity control might increase nitrate leaching, operational criteria should optimize the trade-off between the application of higher water volumes to reduce soil salinity and lower water volumes to protect groundwater quality from nitrate leaching. The amount of nitrogen leached from the soil root-zone was considerable (on average, 156kgNha−1year−1) and higher in autumn-winter than spring-summer (72 vs. 28% of the average annual value). In autumn-winter season, nitrogen losses were mainly due to plentiful nitrogen fertilisation and high rainfall. In spring–summer, extra irrigations promoted salt leaching together with nitrogen losses. To manage both irrigation and nitrogen fertilisation a “decoupling” strategy is recommended. This strategy suggests applying leaching preferably at the end of the spring-summer growing season, soon after crop harvesting or at the beginning of the autumn-winter season, before second crop cycle starting. In autumn-winter season, proper nitrogen supplies and timely top-dressing applications, still allow salts to be discharged by rainfalls but prevent nitrogen losses, thus preserving groundwater quality.

Keywords: Intensive cropping system; Nitrogen fertilisation; Nitrate leaching; Groundwater quality; Saline irrigation water; Irrigation management (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377417300720
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:186:y:2017:i:c:p:40-50

DOI: 10.1016/j.agwat.2017.02.019

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:186:y:2017:i:c:p:40-50