EconPapers    
Economics at your fingertips  
 

Soil water and salt affect cotton (Gossypium hirsutum L.) photosynthesis, yield and fiber quality in coastal saline soil

He Zhang, Duansheng Li, Zhiguo Zhou, Rizwan Zahoor, Binglin Chen and Yali Meng

Agricultural Water Management, 2017, vol. 187, issue C, 112-121

Abstract: To target the favorable conditions for cotton growth in coastal saline soil, a two year field experiment was conducted in 2013 and 2014 by setting various environments for soil water and salt with different groundwater depths (0.6, 1.0, 1.4, 1.8, 2.2, 2.6m in 2013 and 0.4, 0.8, 1.2, 1.6, 2.0, 2.4m in 2014). Results showed that (1) in relatively arid year of 2013, soil exhibited normal soil-relative water content with high salt and mild drought with moderate salt in the optimal groundwater depths of 1.4m and of 1.8m (1.87m for fitting), respectively. In relatively humid year of 2014, soil displayed normal soil-relative water content with low salt in the optimal groundwater depths of 1.6m and 2.0m (1.73m for fitting). (2) Net photosynthesis, cotton yield and fiber quality all approached to the highest values in the optimal treatments. The reduction in net photosynthetic rate was mainly due to non-stomatal restriction in the treatment of 0.6m in 2013 and 0.4m in 2014. Meanwhile, in other treatments stomatal restriction was the main factor for photosynthesis limitations. As compared to optimal groundwater depths, the seed cotton yield was dropped by 73.9%, 21.4% and 71.4%, 21.4% under groundwater depths of 0.6m, 2.6m in 2013 and of 0.4m, 2.4m in 2014, respectively. Reduced boll number played a critical role to decrease seed cotton yield. In summary, the favorable soil-relative water contents for 0–20 and 20–40cm soil depth were 54.68%–65.14% and 69.14%–79.13% in dry year of 2013 and 67.18%–69.39% and 73.00%–77.92% in humid year of 2014, respectively; similarly, electrical conductivity of a 1:5 distilled water for 0–20 and 20–40cm soil depth was recorded as 0.92–1.20dSm−1 and 0.70–0.95dSm−1 in 2013, while 0.28–0.32dSm−1 and 0.45–0.51dSm−1 in 2014, respectively.

Keywords: Groundwater depth; Water and salt stresses; Stomatal and non-stomatal restriction; Chlorophyll fluorescence; Biomass (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377417300987
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:187:y:2017:i:c:p:112-121

DOI: 10.1016/j.agwat.2017.03.019

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:187:y:2017:i:c:p:112-121