Reflectance-based crop coefficients REDUX: For operational evapotranspiration estimates in the age of high producing hybrid varieties
Isidro Campos,
Christopher M.U. Neale,
Andrew E. Suyker,
Timothy J. Arkebauer and
Ivo Z. Gonçalves
Agricultural Water Management, 2017, vol. 187, issue C, 140-153
Abstract:
Methodologies based on earth observation remote sensing allow for a precise estimation of actual water requirements for irrigated crops across large areas. In spite of the many number of experiments using or analyzing the relationship between the basal crop coefficient (Kcb) and the soil adjusted vegetation index (SAVI) for maize, the development of new maize hybrid varieties with modifications related to canopy architecture suggest a possible change of the leaf area index (LAI) for maximum Kcb and its relationship with the SAVI or other vegetation indices. In addition, we noted a lack of analysis of these relationships for cultivated soybean. The objective of this paper is to analyze the Kcb, SAVI and LAI relationships in maize and soybean based on the non-linear relationships proposed by Choudhury et al. (1994). In addition, we propose a modification of the Choudhury et al. (1994) approach based on field-based experimental evidence of a minimum Kcb greater than 0. For sites with limited field data, we also analyze the utility of a simple linear regression based on the Kcb and SAVI values for bare soil and maximum Kcb values. The resulting Kcb-SAVI relationships are assimilated into a remote sensing based soil water balance model. The results of the model are analyzed in terms of irrigation requirements and crop evapotranspiration (ETa) for 11 growing seasons in two fields cultivated with irrigated and rain-fed maize and soybean in eastern Nebraska. Comparisons of measured and modelled ETa values indicate a good agreement, with RMSE lower than 0.7mmd−1 for weekly averaged values. The comparison of actual irrigation applied and irrigation requirements indicate the central pivot systems could not supply adequate water in some growing seasons with higher demands.
Keywords: Soil water balance; SAVI; LAI; Crop coefficient; Maize; Soybean (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377417301026
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:187:y:2017:i:c:p:140-153
DOI: 10.1016/j.agwat.2017.03.022
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().