EconPapers    
Economics at your fingertips  
 

Antropogenic input of nitrogen and riverine export from a Mediterranean catchment. The Celone, a temporary river case study

Anna Maria De Girolamo, Raffaella Balestrini, D’Ambrosio, Ersilia, Giuseppe Pappagallo, Elisa Soana and Antonio Lo Porto

Agricultural Water Management, 2017, vol. 187, issue C, 190-199

Abstract: In a catchmnent, nitrogen (N) export from terrestrial ecosystems to rivers is controlled by the hydrological processes and N balance. In the present paper, the soil system N budget and riverine export were quantified in a Mediterranean watershed, the Celone (South-East, Italy). The study area (72km2) consists of agricultural land (70%) and deciduous forests with three small residential areas. Major N inputs derived from fertilizers and animal manure, corresponding for the whole watershed area to 68 and 12kgNha−1yr−1, respectively. N input from point sources was 1% of total input and atmospheric depositions measured in a gauging station near the study area was quantified in ∼6kgNha−1yr−1. Crop N uptake was the main N output from agricultural land; it was estimated in ∼37kgNha−1yr−1 by using data on crop yields provided by local farmers. Total flux of N in surface water was quantified for a year at the outlet of the study area by using continuous measures of flow and discrete measures of N concentrations carried out with a different frequency during the normal and low flow and when floods occurred. The hydrological regime of the stream, which is a temporary river, plays an important role in N transport. Water quality was found to vary considerably through the year in terms of both nutrient concentrations and loads. Riverine N export was quantified in 41% of total N input, and it was mainly transported during flood events, ∼60% of the annual load was delivered during floods occurred in 38 days. Organic nitrogen and nitrate were the main N forms in surface water, and the contribution per hectare was about 24 and 14kgN, respectively. On a yearly basis, the difference between N inputs and outputs including riverine export was estimated in about 4kgNha−1yr−1 for the whole watershed area. This amount partly accumulates in soils in different N forms and the remaining part, mainly in form of nitrate, percolates through unsaturated soil towards groundwater. This study reports an important analysis of N pollution in a Mediterranean watershed with a temporary river system and limited data availability. Data acquisition and handling have proved to be an important challenge to overcome in N balance quantification. The results and the methodology of the present work can be useful for understanding nitrogen loss dynamics and for functional water management and land use planning.

Keywords: N balance; N export; Point and non point sources of N; Mediterranean catchment; Temporary river (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377417301051
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:187:y:2017:i:c:p:190-199

DOI: 10.1016/j.agwat.2017.03.025

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:187:y:2017:i:c:p:190-199