Yield, water and nitrogen use efficiencies of sprinkler irrigated wheat grown under different irrigation and nitrogen levels in an arid region
Vijay Singh Rathore,
Narayan Singh Nathawat,
Seema Bhardwaj,
Renjith Puthiyedathu Sasidharan,
Bhagirath Mal Yadav,
Mahesh Kumar,
Priyabrata Santra,
Narendra Dev Yadava and
Om Parkash Yadav
Agricultural Water Management, 2017, vol. 187, issue C, 232-245
Abstract:
A major challenge in crop production is to achieve the goal of increasing both yield and resource use efficiency. Irrigation water and nitrogen (N) are scarce and expensive resources constraining wheat production in arid regions. There is limited information on how irrigation and N supply can be simultaneously manipulated to achieve higher yield, water productivity (WP), and nitrogen use efficiency (NUE) of wheat in arid regions. A two-year field experiment was conducted to investigate the effects of irrigation and N rates on yield, WP and NUE of wheat in a hot, arid environment at Bikaner, India. The experimental treatments comprised of six irrigation [100% (ETm; full evapotranspiration), 90% (ETd1), 80% (ETd2), 70% (ETd3), 60% (ETd4), and 50% (ETd5) of ETc (crop evapotranspiration)] levels, and four N [0 (N0), 40 (N40), 80 (N80), and 120 (N120)kgha−1] rates. Moderate deficit irrigation (ETd2) had greatest WP and caused a 17% reduction in water consumption with only a 5% reduction in yield compared to full irrigation (ETm). The N application improved yield and WP. The NUE declined with a reduction in water application and an increase in N rates. The yield and WP response to N rates modified with irrigation levels.The significant increase in grain yield was recorded with N120 at ETm and ETd1, with N80 at ETd2 and ETd3, and with N40 at ETd4 and ETd5 irrigation levels. The significant increase in WP was recorded with N80 at ETm, ETd1, ETd2 and ETd3, and with N40 at ETd4 and ETd5 irrigation levels. The results suggested that moderate deficit irrigation (ETd2) along with 120kgNha−1 could ensure satisfactory grain yield and WP of wheat in arid regions. The study also indicated that the adoption of an appropriate deficit irrigation and N rate combination can be an effective means to reduce non-beneficial water consumption, achieve higher yield, and improve WP and NUE for wheat in an arid environment.
Keywords: Deficit irrigation; Nitrogen use efficiency; Triticum aestivum L.; Water-nitrogen interaction; Water productivity (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377417301221
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:187:y:2017:i:c:p:232-245
DOI: 10.1016/j.agwat.2017.03.031
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().