Determining water quality requirements of coal seam gas produced water for sustainable irrigation
Dirk Mallants,
Jirka Šimůnek and
Saeed Torkzaban
Agricultural Water Management, 2017, vol. 189, issue C, 52-69
Abstract:
Coal seam gas production in Australia generates large volumes of produced water that is generally high in total dissolved solids and has a high sodium absorption ratio (SAR) which may affect soil structure, hydraulic conductivity, and crop production if used untreated for irrigation. By coupling major ion soil chemistry and unsaturated flow and plant water uptake, this study incorporates effects of salt concentrations on soil hydraulic properties and on root water uptake for soils irrigated with produced water featuring different water qualities. Simulations provided detailed results regarding chemical indicators of soil and plant health, i.e. SAR, EC and sodium concentrations. Results from a base scenario indicated that the use of untreated produced water for irrigation would cause SAR and EC values to significantly exceed the soil quality guide values in Australia and New Zealand (ANZECC). The simulations provided further useful insights in the type of coupled processes that might occur, and what the potential impacts could be on soil hydrology and crop growth. Calculations showed that the use of untreated produced water resulted in a decrease in soil hydraulic conductivity due to clay swelling causing water stagnation, additional plant-water stress and a reduction in plant transpiration. In case the produced water was mixed with surface water in a 1:3 ratio prior to irrigation, the calculated soil SAR values were much lower and generally acceptable for sandy to sandy-loam soil. The use of reverse osmosis treated produced water yielded an acceptable salinity profile not exceeding guide values for SAR and EC; the plant water stress was limited as there was no additional salinity stress associated with the low level of salts. Results further illustrated that accounting for coupled geochemical, hydrological and plant water uptake processes resulted in more accurate water balance calculations compared to an approach where such interactions were not implemented. Coupling unsaturated flow modelling with major ion chemistry solute transport using HYDRUS provides quantitative evidence to determine suitable water quality requirements for sustainable irrigation using coal seam gas produced water.
Keywords: Soil management; Salinity risk; Coupled processes; Major ion chemistry; HYDRUS (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377417301531
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:189:y:2017:i:c:p:52-69
DOI: 10.1016/j.agwat.2017.04.011
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().