EconPapers    
Economics at your fingertips  
 

Signal intensity based on maximum daily stem shrinkage can reflect the water status of apple trees under alternate partial root-zone irrigation

Shaoqing Du, Ling Tong, Xiaotao Zhang, Shaozhong Kang, Taisheng Du, Sien Li and Risheng Ding

Agricultural Water Management, 2017, vol. 190, issue C, 21-30

Abstract: Signal intensity (SI) and maximum daily stem shrinkage (MDS) are indicators of the water status and irrigation schedule of fruit trees under conventional irrigation (CI). However, whether SI can reflect the water status of fruit trees under alternate partial root-zone irrigation (APRI) has rarely been reported. Field experiments were conducted on apple trees over two years with two irrigation methods (CI and APRI) and two irrigation amounts (400mm and 500mm) in an arid area. The followings were measured over the whole growth season: MDS, sap flow (SF), air temperature, net radiation, vapor pressure deficit, reference evapotranspiration, soil water content, midday stem water potential and predawn leaf water potential. The signal intensities based on MDS (SIMDS) and sap flow (SISF) were calculated. The results show: first, MDS was significantly higher under CI at 400mm than under APRI at 400mm, while no difference was found between the two irrigation methods at 500mm. MDS was significantly positively correlated with meteorological factors, while SIMDS and SISF were not. Second, SIMDS was significantly lower under APRI than under CI, while no difference was found in SISF between the two irrigation methods. Third, in contrast to SISF, SIMDS was significantly correlated with soil water content as well as with midday stem water potential and predawn leaf water potential under APRI. These results show that the signal intensity based on maximum daily stem shrinkage accurately indicates the water status of apple trees under alternate partial root-zone irrigation in an arid apple production area.

Keywords: Alternate partial root-zone irrigation; Apple tree; Signal intensity; Maximum daily stem shrinkage; Sap flow; Water status (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377417301737
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:190:y:2017:i:c:p:21-30

DOI: 10.1016/j.agwat.2017.05.004

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:190:y:2017:i:c:p:21-30