Dissolved organic carbon loading from the field to watershed scale in tile-drained landscapes
Mark R. Williams,
Kevin W. King and
Norman R. Fausey
Agricultural Water Management, 2017, vol. 192, issue C, 159-169
Abstract:
Subsurface tile drains influence watershed fluxes of nitrogen, phosphorus, and pesticides, but few studies have examined the role of subsurface tile drains and drainage water management practices on watershed dissolved organic carbon (DOC) export. The objective of this study was therefore to quantify the contribution of subsurface tile drains to watershed DOC export and to evaluate the effect of drainage water management of DOC concentrations and loads in tile-drained fields. Discharge and DOC concentration were measured at the outlet of an agricultural headwater watershed (3.9km2) in Ohio, USA and all of the subsurface tile drains (6 total) within the watershed over an 8-year period. Results showed that DOC concentration in both subsurface tile drains and stream water were highly variable (0.1–44.4mgL−1), with mean DOC concentrations ranging from 5.7 to 8.2mgL−1. Intra-annual variability in subsurface tile drain and watershed hydrology yielded seasonal differences in DOC loading. Over the study period, 81.7% and 92.4% of watershed and subsurface tile drain DOC loading, respectively, occurred during 20% of the time, typically during winter and spring high flow events. Mean annual DOC loading from the drainage network was 19.6kgha−1, while mean annual DOC loading at the watershed outlet was 43.9kgha−1. On average, subsurface tile drainage comprised 33% of monthly watershed DOC export (<1–82%). Implementing drainage water management at one of the subsurface tile drains decreased discharge (179mm; 22%) and DOC loading (6.8kgha−1; 26%) compared to an adjacent free draining subsurface tile drain. Findings from this study demonstrate the utility of simultaneously monitoring solute fluxes from both field and watershed scales, and indicate that subsurface tile drains are a significant source of DOC to headwater agricultural streams. Further, results suggest that drainage water management can significantly decrease DOC losses from tile-drained fields.
Keywords: Subsurface tile drain; Headwater; Drainage water management; Water quality; Nutrient transport; Subsurface hydrology (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377417302317
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:192:y:2017:i:c:p:159-169
DOI: 10.1016/j.agwat.2017.07.008
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().