Can conservation agriculture improve crop water availability in an erratic tropical climate producing water stress? A simple model applied to upland rice in Madagascar
Guillaume Bruelle,
François Affholder,
Thomas Abrell,
Aude Ripoche,
Julie Dusserre,
Krishna Naudin,
Pablo Tittonell,
Lilia Rabeharisoa and
Eric Scopel
Agricultural Water Management, 2017, vol. 192, issue C, 281-293
Abstract:
Family farms in the tropics mainly rely on rainfed agriculture. Water availability is limited to rainfall and is one of the main constraints to crop productivity. Conservation agriculture (CA) is promoted as an alternative that, among other functions, enhances water infiltration and limits evaporation from the soil thanks to a mulch of crop residues left on the soil surface. These functions are assumed to reduce the water availability constraint by limiting water stress during crop growth. But the variability of rainfall distribution combined with the wide range of agroecological conditions and the variety of crop husbandries in the tropics makes it difficult to evaluate the efficiency of mulching. The aim of this study was to capture the variability through a simple modeling approach using the crop growth model PYE-CA, which requires a limited set of parameters and a virtual experiment (VE). We applied our approach to a case study of upland rice in the Lake Alaotra region in Madagascar, where rainfall distribution is highly variable. The VE used a 17-year series of weather data with a range of soil water conditions, sowing dates, and growth and yield limitations that cover the variability of agroecological conditions and management systems in the study area. The VE revealed that variable successions of wet and dry episodes during the rainy season resulted in both water stress and an increase in deep drainage. In the majority of conditions simulated, enhancing water infiltration through CA mainly increased water loss through drainage. However, better water infiltration may also reduce the production risks involved in early sowing or crop intensification, thereby offering new opportunities to farmers. As an alternative to time consuming and labor intensive experimentation, we propose a suitable modeling approach to identify the main drivers of rainfall×crop interactions that could be extrapolated to other regions in the tropics.
Keywords: Mulching; Crop residues; Rainfall; Water limited yield; Cropping system model; Stylosanthes guianensis (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377417302500
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:192:y:2017:i:c:p:281-293
DOI: 10.1016/j.agwat.2017.07.020
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().