Effects of precision conservation agriculture in a maize-wheat-mungbean rotation on crop yield, water-use and radiation conversion under a semiarid agro-ecosystem
C.M. Parihar,
S.L. Jat,
A.K. Singh,
A. Ghosh,
N.S. Rathore,
B. Kumar,
S. Pradhan,
K. Majumdar,
T. Satyanarayana,
M.L. Jat,
Y.S. Saharawat,
B.R. Kuri and
D. Saveipune
Agricultural Water Management, 2017, vol. 192, issue C, 306-319
Abstract:
In recent years, water resources have decreased and water saving has become an important issue in the Indo-Gangetic Plains (IGP) of South Asia. Maize-wheat-mungbean (MWMb), is an alternate to traditional rice-wheat cropping system, can mitigate the effects of the frequency, intensity, and duration of rainfall due to climate change on food security in the semi arid-region of north-western IGP. The objective of this research was to determine the productivity, water-use efficiency (WUE) and incident radiation conversation efficiency (IRCE) of MWMb cropping system under 3 tillage practices [zero tillage (ZT), permanent beds (PB) and conventional tillage (CT) and 4 nutrient management strategies [Control (unfertilized), farmers’ fertilizer practice (FFP), recommended dose of fertilizers (Ad-hoc) and a site specific nutrient management (SSNM” using the Nutrient Expert® decision support tool). Results of multi-year trial showed that among tillage practices, ZT and PB practices reduced the system irrigation water requirement by 140–200mmha−1 and 200–300mmha−1 respectively, compared to CT system, resulting an enhanced grain yield by 5.7–24.6%, biomass yield by 4.6–20.8%, WUE by 18.4–39.0%, and IRCE by 9.9–34.4%, respectively. Significant (P≤0.05) improvement in system WUE, grain and biomass yield, and IRCE (by 30.6–59.9, 38.3–80.5, 34.3–64.7 and 13.5–48.5%, respectively) was observed in SSNM compared to the unfertilized plots. Significant (P≤0.05) interactions between tillage practices and nutrient management strategies was measured with respect to water–use, WUE, grain and biomass yield, and IRCE of MWMb system. Combinations of ZT/PB practices+SSNM/Ad-hoc nutrient management strategies registered significantly (P<0.05) higher system WUE and IRCE, grain and biomass yield compared to CT+unfertilized/FFP. Results of present study showed that SSNM/Ad-hoc based nutrient application coupled with CA-based tillage practices in MWMb system has complementarity to attain higher system productivity, WUE and IRCE compared to the use of these crop management practices in isolation.
Keywords: Farmers fertilizer practices; Nutrient management; Permanent beds; Site specific nutrient management; Zero tillage (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377417302512
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:192:y:2017:i:c:p:306-319
DOI: 10.1016/j.agwat.2017.07.021
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().