Two-dimensional modeling of nitrogen and water dynamics for various N-managed water-saving irrigation strategies using HYDRUS
Fatemeh Karandish and
Jiří Šimůnek
Agricultural Water Management, 2017, vol. 193, issue C, 174-190
Abstract:
Nitrate losses are the dominant cause of the non-point source pollution under agricultural fields. In this study, the HYDRUS-2D model was first calibrated and validated using data collected during a two-year field investigation in a drip-irrigated maize field and then applied to evaluate the influence of 176 different N-managed water-saving irrigation scenarios on water and N dynamics and maize grain yield. Various scenarios were defined by combining 11 irrigation levels (IL=0–100% with a 10% interval), 8N fertilization rates (NR=0–400kgha−1 with a 50kgha−1 interval) and two water-saving irrigation strategies: deficit irrigation (DI) and partial root-zone drying (PRD). Reliable estimates of soil NO3−-N concentrations (RMSE=0.39–10.9mgl−1 and MBE=−8.9–8.4mgl−1), crop N uptake (RMSE=3.9–8.9kgha−1 and MBE=−5.3–6.25kgha−1), and soil water contents (RMSE=2.3–5.11mm and MBE=1.63–4.93mm) were provided by HYDRUS-2D. Based on the simulated results, the fertigation strategy with NR=200kgha−1 is an optimum strategy. For the higher fertigation rates (NR≥250kgha−1), the NO3−-N leaching out of the surface layers (0–20cm) increased by 0.1–183% while N uptake was enhanced by only 0.3–15%. On the other hand, reducing NR below this level would have resulted in severe economic losses. A 30% reduction in IL at NR=200kgha−1 shows an enormous potential in lowering N leaching below different soil layers (12–99%) while reducing crop N uptake by only 5.4%. In addition, higher crop yield by 0.2–20.2% can be expected under PRD since crop N uptake is enhanced by more water available in the surface layers. While on the one hand, PRD ensures environmentally safer fertilizer applications, on the other hand, the economic objectives are met more easily under PRD than under DI. Additionally, it could be concluded that the HYDRUS-2D model, instead of labor- and time-consuming and expensive field investigations, could be reliably used for determining the optimal scenarios under both the DI and PRD strategies.
Keywords: Maize grain yield; Numerical simulation; NO3−-N transport; N uptake; Partial root-zone drying (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377417302433
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:193:y:2017:i:c:p:174-190
DOI: 10.1016/j.agwat.2017.07.023
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().