Predicting design water requirement of winter paddy under climate change condition using frequency analysis in Bangladesh
A.R.M.Towfiqul Islam,
Shuang-He Shen and
Shen-Bin Yang
Agricultural Water Management, 2018, vol. 195, issue C, 58-70
Abstract:
The effects of climate change on the agricultural sector are tremendous. Thus, it is essential to determine its impacts on agricultural water resources and to minimize adverse effects on crop production. The present study aims to simulate climate data based on SRES A1B scenario from the outputs of three General Circulation Models (GCMs) namely, FGOAL, HADCM3 and IPCM4 and examine the design water requirement (DWR) of winter paddy using frequency analysis under climate change condition in Bangladesh. The average change rates of DWR in four climatic zones were compared to baseline and the results were −12.16% (2020s), −0.28% (2055s), and 1.25% (2090s) for the FGOAL, −4.44% (2020s), 0.57% (2055s) and 1.25% (2090s) for the HADCM3, and −1.12% (2020s), 2.22% (2055s) and 6.69% (2090s) for the IPCM4. The change rates of gross paddy water demand (GPWD) for three GCMs ranged from −3.01% to 11.16%. In both cases of the DWR and GPWD, the change rates were above 3%, indicating a warning signal to the future winter paddy water management. The outcomes of this study can be used as basic data for the development of agricultural water resource management, which will help to minimize the drought-risk and to implement future agricultural water resource policies in Bangladesh.
Keywords: Crop production; Design water requirement; Climate change scenario; Gross paddy water demand; Drought risk (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377417303153
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:195:y:2018:i:c:p:58-70
DOI: 10.1016/j.agwat.2017.10.003
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().