EconPapers    
Economics at your fingertips  
 

Deficit irrigation provokes more pronounced responses of maize photosynthesis and water productivity to elevated CO2

Xiaojie Li, Shaozhong Kang, Xiaotao Zhang, Fusheng Li and Hongna Lu

Agricultural Water Management, 2018, vol. 195, issue C, 71-83

Abstract: It is very significant to study the impact of deficit irrigation on crop growth and water use under the future scenarios with elevated CO2 concentrations and reduced water availability. This study investigated the growth and yield differences of maize grown in a phytotron in response to elevated CO2 concentrations under different irrigation treatments. Two irrigation treatments were carried out: regular irrigation (RI) and deficit irrigation (DI), in which the irrigation amounts were respectively 100 and 70% of evapotranspiration (ET), with four CO2 concentrations (400, 550, 700, and 900μmolmol−1). Thus eight treatments, i.e. RI400, RI550, RI700, RI900, DI400, DI550, DI700, and DI900 were included in this study. Results show that, the relative reductions of stomatal conductance (gs) and transpiration rate (Tr) in response to elevated CO2 concentrations were higher under DI than RI, thus causing leaf temperature (Tleaf) rose higher under DI due to the transpiration cooling effect. As photosynthetic rate (Pn) and its physiological process were positively correlated with Tleaf, the relative increases of Pn and the resulting maximum leaf area index (LAImax), total dry matter weight (TDW), and grain yield (GY) react to elevated CO2 concentrations were higher under DI than RI, as well as the leaf water use efficiency (WUEL) and water productivity (WP). The DI900 treatment in which the irrigation amount was reduced by 30% only decreased the TDW and GY by 7 and 5% when compared with RI900. The variation of GY was consistent with the variation of kernels per ear (KPE), but was not directly related to hundred-grain weight (HGW). The above results show that when atmospheric CO2 concentrations rise in the future, deficit irrigation would be an effective way of saving water and would not only have a mitigating effect on water crises, but would also contribute to improving WP, which is more important in terms of actual production.

Keywords: CO2 concentration; Deficit irrigation; Photosynthesis; Growth; Yield; Water productivity (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377417303128
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:195:y:2018:i:c:p:71-83

DOI: 10.1016/j.agwat.2017.09.017

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:195:y:2018:i:c:p:71-83