Realistic evaluation of crop water productivity for sustainable farming of wheat in Kamin Region, Fars Province, Iran
Behrouz Abolpour
Agricultural Water Management, 2018, vol. 195, issue C, 94-103
Abstract:
Currently, the economic wheat production faces severe challenges due to an increasing number of droughts. In an effort to enhance yields, most arid and semi-arid areas increase the water volume used for irrigation and cultivation of wheat, resulting in an intensified pressure on water resource systems. Therefore, it has become increasingly important to determine the required water volume per unit area in relation to expected wheat performance. However, such an estimation of relevant performance factors has been difficult due to unpredictable water supply capacities and the lack of reliable estimates for the demand of water. The potential crop water productivity (PCWP) defined in this study was comparing with its actual value has which obtained from field measurements based on a new approach of risk quantification. Using this comparison of water use, the management coefficient was estimated, and the production reliability of wheat was calculated.
Keywords: Crop planning; Modeling; Optimization; Uncertainty; Water resources (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377417303189
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:195:y:2018:i:c:p:94-103
DOI: 10.1016/j.agwat.2017.10.006
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().