Yield production functions of irrigated sugarbeet in an arid climate
David D. Tarkalson,
Bradley A. King and
Dave L. Bjorneberg
Agricultural Water Management, 2018, vol. 200, issue C, 1-9
Abstract:
Increased water demands and drought have resulted in the need to provide data to guide deficit water management decisions in irrigated sugarbeet (Beta vulgaris L.) production. The objective of this study was to quantify the yield response of sugarbeet to water input and actual crop evapotranspiration (ETa) on a soil type (silt loam) common to sugarbeet production in the Northwest U.S. These relationships are valuable to understanding sugarbeet response over a range of water availability and in developing tools to assess future production under water shortages. This paper consolidates data from three studies consisting of ten site-years from 2009 to 2016. The studies were at the USDA-Agricultural Research Service facility in Kimberly, ID on a Portneuf silt loam soil. Treatments consisted of varying levels of cumulative seasonal Kimberly-Penman ET model estimated crop evapotranspiration (ETc) rates ranging from rain-fed to 125% of ETc. Irrigation methods consisted of surface drip irrigation (3 site-years), linear/pivot overhead sprinkler (6 site-years), and solid-set sprinkler (1 site-year). Irrigation frequency was consistent for all studies with applications occurring 2–3 times per week depending on ETc demand. Estimated recoverable sucrose (ERS) yield and root yield were measured, and soil water contents were measured. Across all site-years, quantitative relationships between both actual crop ET (ETa) and water input, and sugarbeet yield and quality variables were developed. Significant (0.05 probability level) positive linear relationships were found between ETa and sugarbeet ERS and root yields (r2 = 0.78). Estimated recoverable sucrose and root yields increased at rates of 19.4 kg ha−1 mm−1 ETa and 0.13 Mg ha−1 mm−1 ETa, respectively. When ETa depths of 719 and 729 mm were reached by the crop, root and ERS yields were maximized, respectively. When water input (irrigation + precipitation) depths of 598 and 605 mm were applied root and ERS yields were maximized, respectively. The quantitative relationships between both ETa and water input, and sugarbeet yields can be used to quantify sugarbeet production under deficit irrigation conditions (data derived from pivot/linear, drip, and solid set irrigation types), which may arise due to water shortage scenarios, or when drought occurs in non-irrigated areas.
Keywords: Evapotranspiration; Crop water use; Water use efficiency; Irrigation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377418300143
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:200:y:2018:i:c:p:1-9
DOI: 10.1016/j.agwat.2018.01.003
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().