EconPapers    
Economics at your fingertips  
 

Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia

V. Phogat, J.W. Cox and J. Šimůnek

Agricultural Water Management, 2018, vol. 201, issue C, 107-117

Abstract: Water and water related salinity risks to viticulture were assessed by running the HYDRUS-1D model with 100 ensembles of downscaled daily meteorological data obtained from the Global Climate Model (GCM) for 2020–2099. The modeling output was evaluated for seasonal irrigation requirements of viticulture (Ir), root zone soil salinity at the beginning of the new season (ECswi), and the average seasonal salinity (ECsw) for all 100 realizations for four 20-year periods centred on 2030 (2020–2039), 2050 (2040–2059), 2070 (2060–2079), and 2090 (2080–2099). The model showed a 4.2% increase in the mean seasonal Ir of viticulture during 2020–2039 as compared to Ir of 350.9 mm during 2004–2015. Similarly, the mean seasonal Ir increased by 7.5, 10.9, and 16.9% during 2040–2059, 2060–2079, and 2080–2099, respectively, as compared to 2004–2015. These projections indicate that viticulture can face significant deficit conditions, which may have a drastic impact on the sustainability and productivity of the grapevine. Likewise, the average median ECswi increased by 40% during 2020–2039 as compared to the 2004–2015 mean ECswi value of 1.63 dS/m, but remained below the threshold (ECsw = 4.2 dS/m) for viticulture. The median seasonal ECswi almost doubled (3.15 dS/m) during 2040–2059, varied from 1.73–8.15 dS/m during 2060–2079, and increased more than three times during 2080–2099 to surpass the threshold salinity for grapevines. Similarly, the seasonal average root zone salinity (ECsw) showed a 47% increase during 2020–2039 over the baseline salinity. It continued increasing at a growing pace during 2040–2059 (1.5–8.64 dS/m) and 2060–2079 (2.78–9.52 dS/m), and increased to almost three times (6.04 dS/m) during 2080–2099 compared to the corresponding baseline salinity (1.97 dS/m). The continued presence of high salt concentrations in the root zone can significantly affect the growth, yield, and wine quality. The modeling results indicate that soil salinity at the beginning of the vine season and the average seasonal salinity are crucial factors that may need special management to sustain the viticulture in this region.

Keywords: Climate change; Viticulture; Irrigation demand; Salinity; HYDRUS-1D (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377418300751
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:201:y:2018:i:c:p:107-117

DOI: 10.1016/j.agwat.2018.01.025

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:201:y:2018:i:c:p:107-117