The physiological processes and mechanisms for superior water productivity of a popular ground cover rice production system
Sen Li,
Qiang Zuo,
Xinxin Jin,
Wenwen Ma,
Jianchu Shi and
Alon Ben-Gal
Agricultural Water Management, 2018, vol. 201, issue C, 11-20
Abstract:
Ground cover rice production systems (GCRPS) have been shown to both save water and increase yields compared to traditional paddy rice production systems (TPRPS). Physiological processes and mechanisms explaining the superiority of a popular GCRPS were investigated in a series of hydroponic, soil column and field experiments. Soil water, temperature and nitrogen, leaf gas exchange, plant water and nitrogen, growth and yield, transpiration, and water productivity were analyzed. Compared to TPRPS, plant available soil inorganic nitrogen was generally improved under GCRPS due to a combination of higher soil temperature and less nitrogen loss through non-physiological water consumption, especially during the early growing season. Consequently, more nitrogen was absorbed by plants under GCRPS except serious drought conditions, accompanied by higher nitrogen contents in plant tissues. Preferable specific leaf nitrogen might lead to higher leaf photosynthetic rate under optimal water conditions and less decrease relative to leaf transpiration rate under water stress. Therefore, rice under GCRPS grew faster with much more biomass and grain yield while transpiration consumption was limited in spite of the fact that the number of tillers and therefore leaf area were increased relative to TPRPS, resulting in superior water productivity. Compared to TPRPS, the root system under GCRPS was limited, but it could absorb enough water and nutrients (especially nitrogen) to support a relatively large canopy even when under water stress, which might be attributed to its higher nitrogen content and thus stronger activity.
Keywords: Leaf gas exchange; Root uptake capacity; Specific leaf nitrogen; Specific root nitrogen; Water use efficiency (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377418300064
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:201:y:2018:i:c:p:11-20
DOI: 10.1016/j.agwat.2018.01.002
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().