Border irrigation performance with distance-based cut-off
Mohamed Khaled Salahou,
Xiyun Jiao and
Haishen Lü
Agricultural Water Management, 2018, vol. 201, issue C, 27-37
Abstract:
Border irrigation is widely practised for winter wheat production on the North China Plain. Winter wheat is mainly irrigated with groundwater as a supplement to insufficient precipitation to maintain high agricultural production. As a result of the increased demands for water, groundwater levels have declined. Therefore, improvements to border irrigation performance and water use efficiency are urgently needed. The objective of this study was to determine the optimal distance at which to cut off inflow under different inflow rate conditions in closed-ended border systems. The experimental treatments included three inflow rates (high, moderate, and low, with average rates of 6.91 l s−1 m−1, 4.95 l s−1 m−1, and 2.81 l s−1 m−1, respectively) and three cut-off ratios (CRs) arranged in three replications at the CAS Ecological Agricultural Experiment Station in Nanpi, Hebei Province, China. The surface irrigation hydraulic simulation model WinSRFR was used to examine the sensitivity of the existing design to a range of bottom slopes, surface roughness values, and inflow rates to demonstrate the robustness of the solutions in terms of their application efficiency and low-quarter distribution uniformity. The results present the optimum CR values for different inflow rate conditions to maximize irrigation performance. The results indicate that irrigation performance above the optimum CR values for high, moderate, and low inflow rates is not very sensitive to bottom slope, and no substantial changes in performance were noted when Manning’s roughness coefficient was between 0.04 and 0.09. A set of inflow rate ranges that corresponds to the recommended CRs that could achieve high irrigation performance is presented.
Keywords: Surface irrigation; Border irrigation; Inflow rate; Cut-off ratio; Irrigation performance (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037837741830060X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:201:y:2018:i:c:p:27-37
DOI: 10.1016/j.agwat.2018.01.014
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().