EconPapers    
Economics at your fingertips  
 

Deficit irrigation and transparent plastic covers can save water and improve grapevine cultivation in the tropics

Jefferson Rangel da Silva, Weverton Pereira Rodrigues, Luciene Souza Ferreira, Wallace de Paula Bernado, Jéssica Sousa Paixão, Angelica Eloisa Patterson, Katherine Fraga Ruas, Leandro Hespanhol Viana, Elias Fernandes de Sousa, Ricardo Enrique Bressan-Smith, Stefano Poni, Kevin Lee Griffin and Eliemar Campostrini

Agricultural Water Management, 2018, vol. 202, issue C, 66-80

Abstract: We examined the interactive effects of deficit irrigation and transparent plastic covering (TPC) on key physiological traits in tropically grown grapevines. ‘Niagara Rosada’ grapevine (Vitis labrusca) was subjected to both Regulated Deficit Irrigation (RDI) and Partial Rootzone Drying (PRD) while being grown under a TPC to address the following questions: (i) Does the grapevine present anisohydric or isohydric behavior? (ii) How does deficit irrigation affect leaf water potential (Ψ)? (iii) Can RDI and PRD improve plant́s water use efficiency? (iv) How does deficit irrigation affect leaf photochemical and biochemical capacity? (v) What are the effects of deficit irrigation on leaf respiration and leaf carbon balance? (vi) Is it possible to save water without affecting yield and fruit quality? Three water management techniques were applied: full-irrigated (FI): 100% of the crop evapotranspiration (ETc) was supplied to both sides of the root system; RDI: 50% of the ETc was supplied to both sides of the root system; and PRD: 50% of ETc was alternately supplied to only one side of the root system. These irrigation treatments were replicated such that the two plots were either covered by a polyethylene plastic structure or remained uncovered. We found that: (i) ‘Niagara Rosada’ grapevine presented anisohydric behavior; (ii) deficit irrigation did not affect Ψ; (iii) Neither RDI nor PRD had a significant effect on water use efficiency (iv); no limitations by the carboxylation reactions of photosynthesis or Rubisco oxygenation (Vo1500) were observed, and photochemical capacity was not inhibited; (v) Light and dark leaf respiration rates were not affected by either RDI or PRD and therefore deficit irrigation did not damage the leaf carbon balance; (vi) a considerable volume of water was saved when deficit irrigation was used, without affecting production; (vii) TPC use can be an effective strategy for growing grapevine in tropical conditions.

Keywords: Photosynthetic capacity; Water use efficiency; Rubisco oxygenation/carboxylation rates; Light inhibition of respiration; Leaf carbon balance; Chlorophyll a fluorescence (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377418300994
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:202:y:2018:i:c:p:66-80

DOI: 10.1016/j.agwat.2018.02.013

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:202:y:2018:i:c:p:66-80