Comparison of three crop water stress index models with sap flow measurements in maize
Ming Han,
Huihui Zhang,
Kendall C. DeJonge,
Louise H. Comas and
Sean Gleason
Agricultural Water Management, 2018, vol. 203, issue C, 366-375
Abstract:
Both empirical and theoretical models have been widely used to calculate a crop water stress index (CWSI) − a metric often used to describe crop water status. The purpose of this study was to determine the accuracy, limitation, and uncertainty of an empirical (CWSI-E) and two theoretical models compared with sap flow measurement in maize. One theoretical model used a calculated aerodynamic resistance (CWSI-T1), and the other theoretical model used seasonal average aerodynamic resistance (CWSI-T2). Considering the uncertainty of crop coefficient and sap flow measurement, CWSI-T2 and CWSI-E models gave reasonable overall estimates of water stress. The average root mean square deviation at each growth stage from each model ranged from 0.16 to 0.33. CWSI-T2 and the CWSI-E provided relatively accurate prediction of crop stress, both between growth stages and irrigation events. However, CWSI-T1 did not accurately predict water stress between growth stages or between irrigation events. By including climate factors, crop water stress estimated by CWSI-T2 showed less variation and uncertainty than CWSI-E. The uncertainty of both CWSI-T2 and CWSI-E decreased with increasing vapor pressure deficit (VPD), and CWSI-E show larger crop water stress prediction uncertainty. The intercept of non-water stress baseline was the main source of the uncertainty for CWSI-E and CWSI-T2. Considering both uncertainty and stability, we recommend CWSI-T2 model (i.e., seasonal average aerodynamic resistance) for maize water stress assessment.
Keywords: Empirical CWSI; Theoretical CWSI; Aerodynamic resistance; Water stress; Deficit irrigation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377418301252
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:203:y:2018:i:c:p:366-375
DOI: 10.1016/j.agwat.2018.02.030
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().