EconPapers    
Economics at your fingertips  
 

Assessment of water sources and their contributions to streamflow by end-member mixing analysis in a subtropical mixed agricultural catchment

Yujuan Lv, Lei Gao, Josie Geris, Lucile Verrot and Xinhua Peng

Agricultural Water Management, 2018, vol. 203, issue C, 411-422

Abstract: Knowledge of the dominant water sources and their relative contributions to streams in time is important for understanding the underlying hydrological processes as well as managing the quantity and quality of water resources. In many subtropical regions, the complexity of mixed agricultural land and water use in combination with lack of data further inhibits such understanding of the dominant catchment scale runoff generation processes. This study provides new insights into the time-variable interactions of natural and anthropogenic influences on the catchment response through integrated hydrometric and multi-tracer (stable water isotopes, Mg2+, Na+, Si4+, Cl−, and Electricity Conductivity) analyses. The combined diagnostic tools of mixing models (DTMM) and end-member mixing analysis (EMMA) were successfully used to evaluate the spatiotemporal variability in key water sources of a subtropical catchment in China. This study site is characterized by rain-fed uplands and irrigated water paddy fields. The EMMA results for one year of data showed that irrigation water, rainwater and ground water were the three main sources, which contributed to 64%, 19% and 17% of the streamflow on average, respectively. However, temporal patterns in rainfall and irrigation practices did cause significant variability in these relative contributions. Overall, we found that routine agricultural practices to optimize crop growth (especially during paddy growth periods) was a more important factor than hydro-meteorological conditions in controlling the regime and properties of water sources. The relatively simple but successful application of EMMA and DTMM in a complex environment demonstrates that it is a valuable approach for understanding water sources and hydrologic processes concerning agricultural or mixed-land use catchments.

Keywords: Agricultural catchment; End-member mixing model; Critical zone observatory; Water sources (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377418301598
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:203:y:2018:i:c:p:411-422

DOI: 10.1016/j.agwat.2018.03.013

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:203:y:2018:i:c:p:411-422