Degree of phosphate saturation in highly weathered tropical soils
Murilo de Campos,
João Arthur Antonangelo,
Sjoerd E.A.T.M. van der Zee and
Luís Reynaldo Ferracciú Alleoni
Agricultural Water Management, 2018, vol. 206, issue C, 135-146
Abstract:
The degree of phosphate saturation (DPS) is an indicator for P-saturation, which is of assistance to the prediction of P losses and potential eutrophication of surface water. The scaling factor (α) estimates the adsorption capacity of the soil and is used to calculate the DPS. In soils from temperate regions, the value of α = 0.5 is widely used. However, using just a single value for α may fail to estimate the adsorption capacity correctly for all soils. In this study, the aims were (i) to calculate the scaling factor α and the DPS of highly weathered tropical soils with different chemical, physical and mineralogical properties in order to predict P losses; and (ii) to identify which soil properties are related to P adsorption. The scaling factor α and the DPS were calculated at 1, 3, 7, 21, 42 and 84 days (d), the highest one in recognition of the long-term kinetics of sorption. The values of α increased as the contact period increased. Lower DPS values were obtained in soils with high P adsorption capacity whereas the highest DPS values were obtained in soils with a lower adsorption capacity. Out of ten Oxisols studied, six of them had an α higher than 1. Contents of clay, organic carbon (C) and poorly crystalline (Alox) and crystalline (“free”) Al oxides were the properties that best correlated with P adsorption. For the Oxisols, the clay content, poorly crystalline together with crystalline Fe and Al oxides represented the main components related to P adsorption. The highest DPS (31%) was found in Typic Udorthent. The content of poorly crystalline oxides was not suitable for the scaling factor α for most Oxisols, and only the Typic Udorthent exceeded the critical threshold of 23%, and is thus more susceptible to loss of P.
Keywords: Loss of P; Scaling factor α; Degree of P saturation; Sorption capacity of P; Principal component analysis (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377418305237
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:206:y:2018:i:c:p:135-146
DOI: 10.1016/j.agwat.2018.05.001
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().