Prediction of applied irrigation depths at farm level using artificial intelligence techniques
R. González Perea,
E. Camacho Poyato,
P. Montesinos and
J.A. Rodríguez Díaz
Agricultural Water Management, 2018, vol. 206, issue C, 229-240
Abstract:
Irrigation water demand is highly variable and depends on farmer behaviour, which affects the performance of irrigation networks. The irrigation depth applied to each farm also depends on farmer behaviour and is affected by precise and imprecise variables. In this work, a hybrid methodology combining artificial neural networks, fuzzy logic and genetic algorithms was developed to model farmer behaviour and forecast the daily irrigation depth used by each farmer. The models were tested in a real irrigation district located in southwest Spain. Three optimal models for the main crops in the irrigation district were obtained. The representability (R2) and accuracy of the predictions (standard error prediction, SEP) were 0.72, 0.87 and 0.72; and 22.20%, 9.80% and 23.42%, for rice, maize and tomato crop models, respectively.
Keywords: Irrigation scheduling; Precision agriculture; ANFIS; Genetic algorithm; Optimal input variables (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377418306577
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:206:y:2018:i:c:p:229-240
DOI: 10.1016/j.agwat.2018.05.019
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().