EconPapers    
Economics at your fingertips  
 

Nutritional water productivity of selected leafy vegetables

M.K. Nyathi, G.E. Van Halsema, Y.G. Beletse, J.G. Annandale and P.C. Struik

Agricultural Water Management, 2018, vol. 209, issue C, 111-122

Abstract: The major challenge affecting rural resource-poor households (RRPHs) in South Africa is deficiencies in micronutrients (iron and zinc) and vitamin A. Traditional leafy vegetables (TLVs) are dense in iron, zinc, and β-carotene concentrations. Therefore, they are deemed suitable to improve the dietary diversity of RRPHs. The main objective of this study was to assess the effect of irrigation regimes on nutritional water productivity (NWP) of selected leafy vegetables [Amaranthus cruentus (Amaranth) and Cleome gynandra (Spider flower), both TLVs, and Beta vulgaris (Swiss chard)]. Experiments were conducted under a rain shelter at the ARC-VOP, Pretoria, South Africa, during two consecutive seasons (2013/14 and 2014/15). Leafy vegetables were subjected to three irrigation regimes [well-watered (I30), moderate water stress (I50), and severe water stress (I80)]. Data collected [(aboveground biomass (AGB), aboveground edible biomass (AGEB), actual evapotranspiration, and nutrient concentrations (iron, zinc and β-carotene)] were used to calculate NWP of leafy vegetables. Swiss chard exhibited a higher portion of AGEB compared to TLVs due to its larger harvest index (0.57-0.92). Selected TLVs displayed superiority in terms of nutrient richness compared to Swiss chard, under I50. Results indicated that TLVs could provide more than the daily-recommended nutrient intake (DRNI) for vitamin A to all age groups. For iron, Spider flower could supply more than the DRNI to infants between 1 and 3 years of age, whereas for zinc, it could supply approximately 11% to this age group. However, higher micronutrient and β-carotene concentrations did not translate to superior nutritional yield (NY). Swiss chard showed higher Fe-NY and Zn-NY, whereas TLVs were rich in β-carotene-NY. Similarly, Swiss chard demonstrated the highest Fe-NWP (1090 mg m−3) and Zn-NWP (125 mg m−3), whereas Amaranth was larger in β-carotene-NWP (1799 mg m−3), under moderate water stress. These results show that there may be an opportunity to improve NWP under drought conditions. There is a need for future studies that will assess NWP for a wider range of leafy vegetables. These studies should be conducted in different locations and explore the effect of management factors (fertiliser, water stress, planting density and planting date), and soil type on NWP of micronutrients and β-carotene.

Keywords: Deficit irrigation; Hidden hunger; African leafy vegetables; Micronutrient deficiency; Irrigation regimes; Indigenous leafy vegetables (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377418310680
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:209:y:2018:i:c:p:111-122

DOI: 10.1016/j.agwat.2018.07.025

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:209:y:2018:i:c:p:111-122