Crop RS-Met: A biophysical evapotranspiration and root-zone soil water content model for crops based on proximal sensing and meteorological data
David Helman,
David J. Bonfil and
Itamar M. Lensky
Agricultural Water Management, 2019, vol. 211, issue C, 210-219
Abstract:
Assessing crops water use is essential for agricultural water management and planning, particularly in water-limited regions. Here, we present a biophysical model to estimate crop actual evapotranspiration and root-zone soil water content using proximal sensing and meteorological data (Crop RS-Met). The model, which is based on the dual FAO56 formulation, uses a water deficit factor calculated from rainfall and atmospheric demand information to constrain actual evapotranspiration and soil water content in crops growing under dry conditions. We tested the Crop RS-Met model in a dryland experimental field comprising a variety of wheat (Triticum aestivum L. and T. durum) cultivars with diverse phenology. Crop RS-Met was shown to accurately capture seasonal changes in wheat water use during the growing season. The average R2 of modeled vs. observed soil water content for all cultivars (N = 11) was 0.92 ± 0.02 with average relative RMSE and bias of 9.29 ± 1.30% and 0.13 ± 0.03%, respectively. We found that changing the integration time period of the water deficit factor in Crop RS-Met affects the accuracy of the model implying that this factor has a vital role in modeling crop water use under dry conditions. Currently, Crop RS-Met has a simple representation of surface runoff and does not take into consideration heterogeneity in the soil profile. Thus, efforts to combine numerical models that simulate soil water dynamics with a Crop RS-Met model driven by high-resolution remote sensing data may be needed for a spatially continuous assessment of crop water use in fields with more complex edaphic characteristics.
Keywords: Crop; Evapotranspiration (ET); Model; NDVI; Proximal sensing; Soil water content (SWC); Wheat (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377418307352
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:211:y:2019:i:c:p:210-219
DOI: 10.1016/j.agwat.2018.09.043
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().