Modeling nutrients in Lake Dianchi (China) and its watershed
Xiaolin Li,
Annette B.G. Janssen,
Jeroen J.M. de Klein,
Carolien Kroeze,
Maryna Strokal,
Lin Ma and
Yi Zheng
Agricultural Water Management, 2019, vol. 212, issue C, 48-59
Abstract:
Lake Dianchi suffered from severe eutrophication for decades. Past efforts to reduce the eutrophication were not very effective. The objective of this study is to improve our understanding of nitrogen (N) and phosphorus (P) loadings and to analyze to what extent they exceed critical nutrient loadings of Lake Dianchi. To this end, we applied the nutrient MARINA model and the ecosystem model PCLake. Results show that river export of dissolved N and P was high in 2012. About 6 209 ton of total dissolved N (TDN) was exported to the lake (i.e. 23.6 kg ha−1), of which more than two-thirds in the form of dissolved inorganic N. For total dissolved P, this export was about 413 ton (i.e. 1.6 kg ha−1), of which 75% dissolved inorganic P. Urban sewage is a major source of nutrients in rivers in the northern sub-basins. In southern sub-basins, agriculture is an important source of both N and P, while P mining and processing is a major source of dissolved inorganic P. Nutrient inputs to the lake are particularly high from urbanization sub-basins draining into the northern part of the lake (Caohai). Critical nutrient loadings for the northern part of the lake (Caohai) are 0.34 mg P m−2d−1 (3.06 mg N m−2d−1) and for the southern part (Waihai) 0.38 mg P m−2d−1 (3.42 mg N m−2d−1). Actual loadings exceed the critical nutrient loadings by 82 times and 17 times of Caohai and Waihai, respectively. Our study illustrates how linking MARINA with PCLake helped to quantify the causes of lake eutrophication and to identify critical loadings for N and P in the lake. Our study can assist local authorities to formulate management options to reduce nutrient pollution in Lake Dianchi in the future.
Keywords: River export of nutrients; Critical loading; Mining; MARINA nutrient model; PCLake ecosystem model (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377418309387
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:212:y:2019:i:c:p:48-59
DOI: 10.1016/j.agwat.2018.08.023
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().