Can mulching of maize straw complement deficit irrigation to improve water use efficiency and productivity of winter wheat in North China Plain?
Muhammad Adil Rashid,
Xiying Zhang,
Mathias Neumann Andersen and
Jørgen Eivind Olesen
Agricultural Water Management, 2019, vol. 213, issue C, 1-11
Abstract:
Improving resource-use efficiency is vital for sustainable agricultural production and food security in water-scarce regions such as North China Plain. The aim of this study was to assess the effects of irrigation and straw-mulch on accumulated intercepted photosynthetically active radiation (AIPAR), radiation-use efficiency (RUE) and water-use efficiency (WUE) of wheat. A two-factorial field experiment was carried out at Luancheng Research Station (China) during 2015–16 and 2016–17. The factors included three irrigation levels – full (FI), deficit (DI) and partial root-zone drying (PRD), which besides rainfall received 200, 100 and 100 mm of irrigation, respectively, and two mulching strategies – mulch and no-mulch: ∼8 and 0 Mg ha−1, respectively. The results showed that mulch reduced AIPAR (6–11%) and increased RUE for total aboveground dry biomass (3–9%). Mulch affected intercepted photosynthetically active radiation (IPAR) between the tillering and anthesis stages, largely because of reduced soil surface temperature (0.8–1.5 °C), which led to delayed growth/development and impaired light interception. No significant difference was observed between DI and PRD for grain yield; however, effects on WUE varied during the two seasons. DI led to higher WUE during season I compared to PRD, while PRD resulted in highest WUE during season II. AIPAR was reduced under DI and PRD; however, RUE remained unaffected for irrigation treatments. The complementary effects of mulch were observed only under DI where WUE was increased by 4–6%. The results imply that the PRD irrigation under field conditions is not as effective as it has been anticipated, especially in soils with high clay content. Mulch induced reduction in growth/development tends to nullify its positive effects through water conservation. Taken together, these results reiterate the need to further optimize mulching and PRD irrigation practices before recommending their use under field conditions, especially for small grain cereals.
Keywords: Partial root-zone drying; Water conservation; Water-use efficiency; Radiation-use efficiency; Soil water depletion; Soil temperature (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377418311570
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:213:y:2019:i:c:p:1-11
DOI: 10.1016/j.agwat.2018.10.008
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().