Application of anti-transpirants temporarily alleviates the inhibition of symbiotic nitrogen fixation in drought-stressed pea plants
Joseba Aldasoro,
Estíbaliz Larrainzar and
Cesar Arrese-Igor
Agricultural Water Management, 2019, vol. 213, issue C, 193-199
Abstract:
Stomatal closure is one of the first plant responses under a water deficit situation. This leads to a decline in transpiration but also in the plant photosynthetic activity. Legume plants grown under symbiosis with rhizobium bacteria present an inhibition of nitrogen fixation that has been shown to occur even before this of photosynthesis. One of the hypotheses to explain this rapid inhibition is the accumulation of nitrogen (N) compounds in nodules due to reduced transpiration, which would provoke the N-feedback inhibition of nitrogenase activity. The current work analyzes the effects of changes in transpiration rates in the regulation of nitrogen fixation through the application of the anti-transpirant Vapor Gard (VG) to pea (Pisum sativum L.) plants subjected to a progressive water deficit. VG produced a rapid inhibition of nitrogen fixation upon application. This inhibition, however, did not coincide with the accumulation of either amino acids or soluble carbohydrates observed at later drought stages in nodules. Results show that the application of VG has a beneficial, albeit temporary, effect in both maintaining the plant water status and apparent nitrogenase activity of nodulated pea plants under water-deficit conditions.
Keywords: Legume; Symbiosis; Water deficit; Pinolene; Vapor Gard (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377418316032
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:213:y:2019:i:c:p:193-199
DOI: 10.1016/j.agwat.2018.10.014
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().