Comparison of meteorological and satellite-based drought indices as yield predictors of Spanish cereals
David García-León,
Sergio Contreras and
Johannes Hunink
Agricultural Water Management, 2019, vol. 213, issue C, 388-396
Abstract:
In the context of global warming, as drought episodes become increasingly frequent, it is crucial to accurately measure the impacts of droughts on the overall performance of agrosystems. This study aims to compare the effectiveness of meteorological drought indices against satellite-based agronomical drought indices as crop yield explanatory factors in statistical models calibrated at a local scale. The analysis is conducted in Spain using a spatially detailed, 12-year (2003–2015) dataset on crop yields, including different types of cereals. Yields and drought indices were spatially aggregated at the agricultural district level. The Standardised Precipitation Index (SPI), computed at different temporal aggregation levels, and two satellite-based drought indices, the Vegetation Condition Index (VCI) and the Temperature Condition Index (TCI), were used to characterise the dynamics of drought severity conditions in the study area. Models resting on satellite-based indices showed higher performance in explaining yield levels as well as yield anomalies for all the crops evaluated. In particular, VCI/TCI models of winter wheat and barley were able to explain 70% and 40% of annual crop yield level and crop yield anomaly variability, respectively. We also observed gains in explanatory power when models for climate zones (instead of models at the national scale) were considered. All the results were cross-validated on subsamples of the whole dataset and on models fitted to individual agricultural districts and their predictive accuracy was assessed with a real-time forecasting exercise. Results from this study highlight the potential for including satellite-based drought indices in agricultural decision support systems (e.g. agricultural drought early warning systems, crop yield forecasting models or water resource management tools) complementing meteorological drought indices derived from precipitation grids.
Keywords: Cereal yields; Agricultural drought; NDVI; LST; InfoSequia; ESYRCE (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377418305729
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:213:y:2019:i:c:p:388-396
DOI: 10.1016/j.agwat.2018.10.030
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().