Effects of soil properties, water quality and management practices on pistachio yield in Rafsanjan region, southeast of Iran
Behrooz Pourmohammadali,
Seyed Javad Hosseinifard,
Mohammad Hassan Salehi,
Hossein Shirani and
Isa Esfandiarpour Boroujeni
Agricultural Water Management, 2019, vol. 213, issue C, 894-902
Abstract:
In recent decades, the quantity and quality of irrigation water have been reduced due to a significant increase in pistachio cultivation and uncontrolled exploitation of groundwater resources as well as reduction in rainfall precipitation. Therefore, agricultural producers, researchers and policy makers need to pay more attention to appropriate land management as an important strategy to achieve greater yield per unit area and to use soil and water resources in an optimal way. So, the present study was conducted to model the relationships between pistachio yield and soil, water and management variables in Rafsanjan region, the southeast of Iran. One hundred and ninety nine mature orchards were selected and sampled in such a way that an acceptable range of soil and water quality and management were included. The data set consisted of a dependent variable (pistachio yield) and 67 independent variables including soil, water and management characteristics. The results of hybrid genetic algorithm-artificial neural network (GA-ANN) showed that the lowest error was related to the case in which the 23 features were used in modeling. Then, stepwise multiple linear regression (MLR) and artificial neural network (ANN) techniques were applied to estimate pistachio yield. The results indicated that MLR could explain only 28% of the pistachio yield variation, whereas its accuracy increased when the data became more homogeneous via geographically dividing the study area into four parts with the highest densities of pistachio orchards. ANN-based model had a 90% accuracy to predict pistachio yield in the study area. Thus, an accurate estimation of pistachio yield could be achieved by reducing the data dimensionality using feature selection techniques and modeling with ANN. As the models were highly sensitive to irrigation water features, special attention should be paid to new irrigation methods and management practices as an effective strategy to minimize water losses and increase water use efficiency.
Keywords: Soil quality; Pistachio orchard management; Feature selection; Hybrid models; Multiple linear regression; Artificial neural network (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377418305973
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:213:y:2019:i:c:p:894-902
DOI: 10.1016/j.agwat.2018.12.005
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().