EconPapers    
Economics at your fingertips  
 

Evapotranspiration evaluation models based on machine learning algorithms—A comparative study

Francesco Granata

Agricultural Water Management, 2019, vol. 217, issue C, 303-315

Abstract: The constant need to increase agricultural production, together with the more and more frequent drought events in many areas of the world, requires a more careful assessment of irrigation needs and, therefore, a more accurate estimation of actual evapotranspiration. In recent years, several water management issues have been addressed by means of models derived from Artificial Intelligence research. When using machine learning based models, the main challenging aspects are represented by the choice of the best possible algorithm, the choice of adequately representative variables and the availability of appropriate data sets.

Keywords: Actual evapotranspiration; Machine learning; Regression tree; Ensemble methods; Support vector regression; Irrigation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377418312800
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:217:y:2019:i:c:p:303-315

DOI: 10.1016/j.agwat.2019.03.015

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:217:y:2019:i:c:p:303-315