EconPapers    
Economics at your fingertips  
 

Monitoring irrigation water use over paddock scales using climate data and landsat observations

David Bretreger, In-Young Yeo, Juan Quijano, John Awad, Greg Hancock and Garry Willgoose

Agricultural Water Management, 2019, vol. 221, issue C, 175-191

Abstract: Irrigated agriculture has been identified as using approximately 72% of water globally. Many regions of the world are subject to water sharing plans that cross government boarders which contain a mixture of management policies, leading to the requirement to monitor irrigation water use. The study reported here aims to develop and test an approach using Landsat observations to monitor irrigation water use over paddock scales without the need for in-situ observations, ground data or knowledge of planting dates. Using conservative assumptions about agricultural land management practice (i.e. negligible runoff, drainage and soil moisture change), the irrigation is calculated over 25 m x 25 m Landsat images. The approach uses a combination of three vegetation indices derived from Landsat images to calculate crop coefficients (Kc) based on multiple published relationships. These are combined through the FAO56 methodology using gridded rainfall and two gridded reference evapotranspiration (ETo) products to estimate actual evapotranspiration, providing six ETo - Kc combinations which are then compared to actual/recorded irrigation volumes from test sites. The method was tested over an almond farm, two vineyards and a cotton field; in addition to Goulburn-Murray Water’s (GMW) individual farm scale sites with unknown crops, all located within Australia. The developed approach provided estimated irrigation volumes that closely matched measured data for almond and cotton farms, while vineyards returned less accurate results due to localised management techniques that do not agree with land management assumptions made. The results from GMW showed some indication of the irrigation water use, although more details of the site being assessed needs to be available (i.e. crop type and extent). This study demonstrates the ability of certain remote sensing Kc relationships for sensing irrigation water use and shows the potential applications of the developed approach in monitoring irrigation over paddock scale environments.

Keywords: Irrigation; Compliance; Murray-darling basin; Water resource management; Remote sensing (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377418316871
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:221:y:2019:i:c:p:175-191

DOI: 10.1016/j.agwat.2019.05.002

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:221:y:2019:i:c:p:175-191