EconPapers    
Economics at your fingertips  
 

Generalized reference evapotranspiration models with limited climatic data based on random forest and gene expression programming in Guangxi, China

Sheng Wang, Jinjiao Lian, Yuzhong Peng, Baoqing Hu and Hongsong Chen

Agricultural Water Management, 2019, vol. 221, issue C, 220-230

Abstract: Accurate estimation of reference evapotranspiration (ET0) is very important in hydrological cycle research, and is essential in agricultural water management and allocation. The application of the standard model (FAO-56 Penman-Monteith) to estimate ET0 is restricted due to the absence of required meteorological data. Although many machine learning algorithms have been applied in modeling ET0 with fewer meteorological variables, most of the models are trained and tested using data from the same station, their performances outside the training station are not evaluated. This study aims to investigate generalization ability of the random forest (RF) algorithm in modeling ET0 with different input combinations (refer to different circumstances in missing data), and compares this algorithm with the gene-expression programming (GEP) method using the data from 24 weather stations in a karst region of southwest China. The ET0 estimated by the FAO-56 Penman-Monteith model was used as a reference to evaluate the derived RF-based and GEP-based models, and the coefficient of determination (R2), Nash-Sutcliffe coefficiency of efficiency (NSCE), root of mean squared error (RMSE), and percent bias (PBIAS) were used as evaluation criteria. The results revealed that the derived RF-based generalization ET0 models are successfully applied in modeling ET0 with complete and incomplete meteorological variables (R2, NSCE, RMSE and PBIAS ranged from 0.637 to 0.987, 0.626 to 0.986, 0.107 to 0.563 mm day−1, and −2.916% to 1.571%, respectively), and seven RF-based models corresponding to different incomplete data circumstances are proposed. The GEP-based generalization ET0 models are also proposed, and they produced promising results (R2, NSCE, RMSE and PBIAS ranged from 0.639 to 0.944, 0.636 to 0.942, 0.222 to 0.555 mm day−1, and −1.98% to 0.248%, respectively). Although the RF-based ET0 models performed slightly better than the GEP-based models, the GEP approach has the ability to give explicit expressions between the dependent and independent variables, which is more convenient for irrigators with minimal computer skills. Therefore, we recommend applying the RF-based models in water balance research, and the GEP-based models in agricultural irrigation practice. Moreover, the models performance decreased with periods due to climate change impact on ET0. At last, both of the two methods have the ability to assess the importance of predictors, the order of the importance of meteorological variables on ET0 in Guangxi is: sunshine duration, air temperature, relative humidity, and wind speed.

Keywords: Water resources; Climate change impact; Variable importance; Karst region (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377419305499
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:221:y:2019:i:c:p:220-230

DOI: 10.1016/j.agwat.2019.03.027

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:221:y:2019:i:c:p:220-230