EconPapers    
Economics at your fingertips  
 

Variation in kikuyu grass yield in response to irrigation with secondary and advanced treated wastewaters

Alireza Aghajani Shahrivar, Muhammad Muhitur Rahman, Dharmappa Hagare and Basant Maheshwari

Agricultural Water Management, 2019, vol. 222, issue C, 375-385

Abstract: Treated wastewater, also called as recycled water, is a reliable source of water for various non-potable purposes. One of the most common uses of recycled water has been for irrigation. A soil column study was carried out for a period of one year. The objective of this study was to determine the effect of irrigation using two different types of treated wastewaters on kikuyu grass (Pennisetum clandestinum) production in the absence of any kind of chemical fertilisers. Soil irrigated with secondary treated wastewater, MBR (Membrane Bioreactor), resulted in highest annual grass production (16,241 kg of dry-matter per hectare (kg DM/ha)) compared to advanced treated wastewater, IDAL (Intermittently Decanted Aerated Lagoon), and tap water (TW) with annual yields of 7028 and 14,216 kg DM/ha, respectively. Irrigation waters, soil extracted waters and soil samples from different depths of the columns were analysed. Sodium adsorption ratio (SAR), exchangeable cations, electrical conductivity (EC) and pH changed in each experimental column due to different characteristics of applied irrigation waters. The results indicate that high contents of nitrogen and phosphorous in MBR water compensated for the presence of moderate salinity level that contributed to the higher production of grass compared to other two types of irrigation waters. The increase in pH from initial amount of 5.9 to 7.3 in top part of IDAL-irrigated soil may have resulted in low grass yield. This pH increase can be attributed to the high concentrations of cations in the irrigation water in the lack of sufficient amount of nitrogen. Overall, the study demonstrated that a relatively higher grass yield in the absence of any types of fertilisers is possible with recycled water irrigation using secondary treated wastewater. Further, the recycled water irrigation with advanced treatment of wastewater, while costs more, does not result in increased yield benefits.

Keywords: Treated wastewater; Water reuse; Membrane bioreactor; Intermittently decanted aerated lagoon; Kikuyu grass; Yield; Irrigation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377419303543
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:222:y:2019:i:c:p:375-385

DOI: 10.1016/j.agwat.2019.06.012

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:222:y:2019:i:c:p:375-385